ArticleOriginal scientific text

Title

Solving dual integral equations on Lebesgue spaces

Authors 1, , 2, 1

Affiliations

  1. Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J. L. Vives, Calle Luis de Ulloa s/n, 26004 Logro no, Spain
  2. Departamento de Matemáticas, Universidad de Zaragoza, Edificio de Matemáticas, Ciudad Universitaria s/n, 50009 Zaragoza, Spain

Abstract

We study dual integral equations associated with Hankel transforms, that is, dual integral equations of Titchmarsh's type. We reformulate these equations giving a better description in terms of continuous operators on Lp spaces, and we solve them in these spaces. The solution is given both as an operator described in terms of integrals and as a series n=0cnJμ+2n+1 which converges in the Lp-norm and almost everywhere, where Jν denotes the Bessel function of order ν. Finally, we study the uniqueness of the solution.

Keywords

Fourier series, Hankel transform, Bessel functions, dual integral equations

Bibliography

  1. Ó. Ciaurri, J. J. Guadalupe, M. Pérez and J. L. Varona, Mean and almost everywhere convergence of Fourier-Neumann series, J. Math. Anal. Appl. 236 (1999), 125-147.
  2. A. J. Durán, On Hankel transform, Proc. Amer. Math. Soc. 110 (1990), 417-424.
  3. A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.
  4. A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill, New York, 1954.
  5. C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999.
  6. P. Heywood and P. G. Rooney, A weighted norm inequality for the Hankel transformation, Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 45-50.
  7. H. Hochstadt, Integral Equations, Wiley, New York, 1973.
  8. B. Muckenhoupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 23 (1969), 306-310.
  9. P. G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, Canad. J. Math. 25 (1973), 1090-1102.
  10. I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951. Republication: Dover, New York, 1995.
  11. K. Stempak, Transplanting maximal inequalities between Laguerre and Hankel multipliers, Monatsh. Math. 122 (1996), 187-197.
  12. K. Stempak and W. Trebels, Hankel multipliers and transplantation operators, Studia Math. 126 (1997), 51-66.
  13. G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1975.
  14. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, Oxford, New York, 1937.
  15. C. J. Tranter, Integral Transforms in Mathematical Physics, 3th ed., Methuen, London, 1966.
  16. C. J. Tranter, Bessel Functions with Some Physical Applications, English Univ. Press, London, 1968.
  17. J. L. Varona, Fourier series of functions whose Hankel transform is supported on [0,1], Constr. Approx. 10 (1994), 65-75.
  18. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1966.
Pages:
253-267
Main language of publication
English
Received
1999-09-24
Accepted
2000-04-17
Published
2000
Exact and natural sciences