ArticleOriginal scientific text
Title
On ideals consisting of topological zero divisors
Authors 1
Affiliations
- Departamento de Matemáticas, Universidad Autónoma Metropolitana - Iztapalapa, Av. Michoacán y la Purísima, col. Vicentina, AP 55-534, 09 340 México, D. F., México
Abstract
The class ω(A) of ideals consisting of topological zero divisors of a commutative Banach algebra A is studied. We prove that the maximal ideals of the class ω(A) are of codimension one.
Bibliography
- R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dek- ker, 1988.
- V. Müller, Removability of ideals in commutative Banach algebras, Studia Math. 78 (1984), 297-307.
- Z. Słodkowski, On ideals consisting of joint topological divisors of zero, Studia Math. 48 (1973), 83-88.
- W. Żelazko, A characterization of Shilov boundary in function algebras, Comment. Math. 14 (1970) 59-64.
- W. Żelazko, On a certain class of non-removable ideals in Banach algebras, Studia Math. 44 (1972) 87-92.
- W. Żelazko, Banach Algebras, PWN-Elsevier, 1973.
- W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979) 249-261.