ArticleOriginal scientific text

Title

The space of real-analytic functions has no basis

Authors 1, 2

Affiliations

  1. Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
  2. FB Mathematik, Bergische Universität Wuppertal, Gauß str. 20, D-42097 Wuppertal, Germany

Abstract

Let Ω be an open connected subset of d. We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.

Keywords

LB-space, Fréchet space, Schauder basis, Köthe sequence space, complemented subspace, space of real-analytic functions

Bibliography

  1. S. Banach, eorja operacyj, tom I. Operacje liniowe [Theory of operators, vol. I. Linear operators], Kasa Mianowskiego, Warszawa, 1931 (in Polish).
  2. S. Banach, Théorie des opérations linéaires, Monografie Mat. 1, Warszawa, 1932.
  3. C. Bessaga, A nuclear Fréchet space without basis I. Variation on a theme of Djakov and Mitiagin, Bull. Acad. Polon. Sci. 24 (1976), 471-473.
  4. J. Bonet and P. Domański, Real analytic curves in Fréchet spaces and their duals, Monatsh. Math. 126 (1998), 13-36.
  5. J. Bonet and P. Domański, Parameter dependence of solutions of partial differential equations in spaces of real analytic functions, Proc. Amer. Math. Soc., to appear.
  6. P. B. Djakov and B. S. Mityagin, Modified construction of a nuclear Fréchet space without a basis, J. Funct. Anal. 23 (1976), 415-423.
  7. P. Domański and D. Vogt, A splitting theory for the space of distributions, Studia Math. 140 (2000), 57-77.
  8. E. Dubinsky, Nuclear Fréchet spaces without the bounded approximation property, ibid. 71 (1981), 85-105.
  9. P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317.
  10. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  11. L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-182.
  12. H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
  13. M. Klimek, Pluripotential Theory, Clarendon Press, Oxford, 1991.
  14. S. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982.
  15. S. Krantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhäuser, Basel, 1992.
  16. A. Kriegl and P. W. Michor, The convenient setting for real analytic mappings, Acta Math. 165 (1990), 105-159.
  17. A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Amer. Math. Soc., Providence, 1997.
  18. M. Langenbruch, Continuous linear right inverses for convolution operators in spaces of real analytic functions, Studia Math. 110 (1994), 65-82.
  19. M. Langenbruch, Hyperfunction fundamental solutions of surjective convolution operators on real analytic functions, J. Funct. Anal. 131 (1995), 78-93.
  20. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, Berlin, 1977.
  21. A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Anal. Math. 11 (1963), 1-164.
  22. A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann. 163 (1966), 62-88.
  23. R. D. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, 1981.
  24. R. Meise and D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
  25. B. S. Mityagin and G. M. Henkin, Linear problems of complex analysis, Uspekhi Mat. Nauk. 26 (1971), no. 4, 93-152 (in Russian); English transl.: Russian Math. Surveys 26 (1971), no. 4, 99-164.
  26. B. S. Mityagin et N. M. Zobin, Contre-exemple à l'existence d'une base dans un espace de Fréchet nucléaire, C. R. Acad. Sci. Paris Sér. A 279 (1974), 255-258, 325-327.
  27. V. B. Moscatelli, Fréchet space without continuous norms and without bases, Bull. London Math. Soc. 12 (1980), 63-66.
  28. V. P. Palamodov, Functor of projective limit in the category of topological vector spaces, Mat. Sb. 75 (1968), 567-603 (in Russian); English transl.: Math. USSR-Sb. 4 (1969), 529-559.
  29. V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1971), no. 1, 3-66 (in Russian); English transl.: Russian Math. Surveys 26 (1971), no. 1, 1-64.
  30. A. Pełczyński and C. Bessaga, Some aspects of the present theory of Banach spaces, in: S. Banach, Oeuvres, Vol. II, PWN, Warszawa, 1979, 222-302.
  31. A. Pietsch, Nuclear Locally Convex Spaces, Akademie-Verlag, Berlin, 1972.
  32. A. Szankowski, B(H) does not have the approximation property, Acta Math. 147 (1981), 89-108.
  33. D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270.
  34. D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.
  35. D. Vogt, An example of a nuclear Fréchet space without the bounded approximation property, Math. Z. 182 (1983), 265-267.
  36. D. Vogt, Lectures on projective spectra of DF-spaces, seminar lectures, AG Funktionalanalysis, Düsseldorf/Wuppertal, 1987.
  37. D. Vogt, Topics on projective spectra of LB-spaces, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), Kluwer, Dordrecht, 1989, 11-27.
  38. J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Math. 120 (1996), 247-258.
  39. P. Wojtaszczyk, The Franklin system is an unconditional basis in H1, Ark. Mat. 20 (1982), 293-300.
  40. V. P. Zaharjuta, Spaces of analytic functions and complex potential theory, in: Linear Topological Spaces and Complex Analysis 1, A. Aytuna (ed.), METU- TÜBİTAK, Ankara, 1994, 74-146.
  41. V. P. Zaharjuta, Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, I, II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 19 (1974), 133-157; 21 (1974), 65-83 (in Russian).

Additional information

http://matwbn.icm.edu.pl/ksiazki/sm/sm142/sm14226.pdf

Pages:
187-200
Main language of publication
English
Received
2000-03-06
Published
2000
Exact and natural sciences