ArticleOriginal scientific text

Title

Axiomatic theory of spectrum III: semiregularities

Authors 1

Affiliations

  1. Institute of Mathematics AV ČR, Žitná 25, 115 67 Praha 1, Czech Republic

Abstract

We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).

Bibliography

  1. [G] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
  2. [GL] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32.
  3. [H1] R. Harte, On the exponential spectrum in Banach algebras, Proc. Amer. Math. Soc. 58 (1976), 114-118.
  4. [H2] R. Harte, Fredholm theory relative to a Banach algebra homomorphism, Math. Z. 179 (1982), 431-436.
  5. [H3] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, 1988.
  6. [K] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
  7. [KM] V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128.
  8. [KMR] V. Kordula, V. Müller and V. Rakočević, On the semi-Browder spectrum, Studia Math. 123 (1997), 1-13.
  9. [MM] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, ibid. 119 (1996), 129-147.
  10. [MW] A. M. Meléndez and A. Wawrzyńczyk, An approach to joint spectra, Ann. Polon. Math. 72 (1999), 131-144.
  11. [O1] K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.
  12. [O2] K. K. Oberai, Spectral mapping theorem for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365-373.
  13. [R1] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
  14. [R2] V. Rakočević, On the essential spectrum, Zb. Rad. 6 (1992), 39-48.
  15. [S] M. Schechter, On the essential spectrum of an arbitrary operator, J. Math. Anal. Appl. 13 (1966), 205-215.
  16. [Z1] J. Zemánek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), 57-62.
  17. [Z2] J. Zemánek, Approximation of the Weyl spectrum, ibid. 87 (1987), 177-180.
Pages:
159-169
Main language of publication
English
Received
1999-11-22
Published
2000
Exact and natural sciences