ArticleOriginal scientific text

Title

Representations of the spaces C(N)Hk,p(N)

Authors 1, 1

Affiliations

  1. Dipartimento di Matematica 'E. De Giorgi', Università - C.P. 193, 73100 Lecce, Italy

Abstract

We give a representation of the spaces C(N)Hk,p(N) as spaces of vector-valued sequences and use it to investigate their topological properties and isomorphic classification. In particular, it is proved that C(N)Hk,2(N) is isomorphic to the sequence space sl2(l2), thereby showing that the isomorphy class does not depend on the dimension N if p=2.

Bibliography

  1. [A] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  2. [AA] A. A. Albanese, Montel subspaces of Fréchet spaces of Moscatelli type, Glasgow Math. J. 39 (1997), 345-350.
  3. [AMM1] A. A. Albanese, G. Metafune and V. B. Moscatelli, Representations of the spaces Cm(Ω)Hk,p(Ω), Math. Proc. Cambridge Philos. Soc. 120 (1996), 489-498.
  4. [AMM2] A. A. Albanese, G. Metafune and V. B. Moscatelli, Representations of the spaces Cm(N)Hk,pN, in: Functional Analysis (Trier, 1994), S. Dierolf, S. Dineen and P. Domański (eds.), Walter de Gruyter, 1996, 11-20.
  5. [AMM3] A. A. Albanese, G. Metafune and V. B. Moscatelli, On the spaces Ck()Lp(), Arch. Math. (Basel) 68 (1997), 228-232.
  6. [AM] A. A. Albanese and V. B. Moscatelli, A method of construction of Fréchet spaces, in: Functional Analysis, P. K. Jain (ed.), Narosa Publishing House, New Delhi, 1998, 1-8.
  7. [BB] K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180.
  8. [B] J. Bonet, Intersections of Fréchet Schwartz spaces and their duals, Arch. Math. (Basel) 68 (1997), 320-325.
  9. [BD] J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complut. Madrid 2 (suppl.) (1989), 77-92.
  10. [BT] J. Bonet and J. Taskinen, Non-distinguished Fréchet function spaces, Bull. Soc. Roy. Sci. Liège 58 (1989), 483-490.
  11. [DK] S. Dierolf and Khin Aye Aye, On projective limits of Moscatelli type, in: Functional Analysis (Trier, 1994), S. Dierolf, S. Dineen and P. Domański (eds.), Walter de Gruyter, 1996, 105-118.
  12. [MT] P. Mattila and J. Taskinen, Remarks on bases in a Fréchet function space, Rev. Mat. Univ. Complut. Madrid 6 (1993), 93-99.
  13. [M] V. B. Moscatelli, Fréchet spaces without continuous norms and without bases, Bull. London Math. Soc. 12 (1980), 63-66.
  14. [S] R. T. Seeley, Extension of C functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626.
  15. [T1] J. Taskinen, A continuous surjection from the unit interval onto the unit square, Rev. Mat. Univ. Complut. Madrid 6 (1993), 101-120.
  16. [T2] J. Taskinen, Examples of non-distinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 75-88.
  17. [V1] M. Valdivia, Topics in Locally Convex Spaces, North-Holland Math. Stud. 67, 1982.
  18. [V2] M. Valdivia, A characterization of totally reflexive Fréchet spaces, Math. Z. 200 (1989), 327-346.
Pages:
135-148
Main language of publication
English
Received
1999-02-19
Accepted
2000-06-12
Published
2000
Exact and natural sciences