ArticleOriginal scientific text

Title

Centralizers for subsets of normed algebras

Authors 1

Affiliations

  1. Department of Mathematics, Pennsylvania State University, University Park, PA 16802, U.S.A.

Abstract

Let G be the set of invertible elements of a normed algebra A with an identity. For some but not all subsets H of G we have the following dichotomy. For x ∈ A either cxc-1=x for all c ∈ H or {cxc-1:cH}=. In that case the set of x ∈ A for which the sup is finite is the centralizer of H.

Bibliography

  1. B. Aupetit, Propriétés spectrales des algèbres de Banach, Springer, New York, 1979.
  2. J. A. Deddens, Another description of nest algebras, in: Hilbert Space Operators, Lecture Notes in Math. 693, Springer, New York, 1978, 77-86.
  3. D. A. Herrero, A note on similarities of operators, Rev. Un. Mat. Argentina 36 (1990), 138-145.
  4. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, Amer. Math. Soc., Providence, 1956.
  5. I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183.
  6. C. Le Page, Sur quelques conditions entraînant la commutativité dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 265 (1967), 235-237.
  7. C. J. Murphy, C*-algebras and Operator Theory, Academic Press, Boston, 1990.
  8. C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
Pages:
1-6
Main language of publication
English
Received
1998-12-07
Accepted
2000-04-26
Published
2000
Exact and natural sciences