ArticleOriginal scientific text
Title
Centralizers for subsets of normed algebras
Authors 1
Affiliations
- Department of Mathematics, Pennsylvania State University, University Park, PA 16802, U.S.A.
Abstract
Let G be the set of invertible elements of a normed algebra A with an identity. For some but not all subsets H of G we have the following dichotomy. For x ∈ A either for all c ∈ H or . In that case the set of x ∈ A for which the sup is finite is the centralizer of H.
Bibliography
- B. Aupetit, Propriétés spectrales des algèbres de Banach, Springer, New York, 1979.
- J. A. Deddens, Another description of nest algebras, in: Hilbert Space Operators, Lecture Notes in Math. 693, Springer, New York, 1978, 77-86.
- D. A. Herrero, A note on similarities of operators, Rev. Un. Mat. Argentina 36 (1990), 138-145.
- N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, Amer. Math. Soc., Providence, 1956.
- I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183.
- C. Le Page, Sur quelques conditions entraînant la commutativité dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 265 (1967), 235-237.
- C. J. Murphy, C*-algebras and Operator Theory, Academic Press, Boston, 1990.
- C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.