ArticleOriginal scientific text

Title

On the complemented subspaces of the Schreier spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-1058, U.S.A.
  2. Department of Mathematics, National University of Singapore, Singapore 117543

Abstract

It is shown that for every 1 ≤ ξ < ω, two subspaces of the Schreier space Xξ generated by subsequences (elnξ) and (emnξ), respectively, of the natural Schauder basis (enξ) of Xξ are isomorphic if and only if (elnξ) and (emnξ) are equivalent. Further, Xξ admits a continuum of mutually incomparable complemented subspaces spanned by subsequences of (enξ). It is also shown that there exists a complemented subspace spanned by a block basis of (enξ), which is not isomorphic to a subspace generated by a subsequence of (enζ), for every 0ζξ. Finally, an example is given of an uncomplemented subspace of Xξ which is spanned by a block basis of (enξ).

Keywords

Schreier sets, complemented subspace

Bibliography

  1. D. E. Alspach and S. A. Argyros, Complexity of weakly null sequences, Dissertationes Math. 321 (1992).
  2. G. Androulakis and E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math. 109 (1999), 125-149.
  3. S. A. Argyros and I. Deliyanni, Examples of asymptotic l1 Banach spaces, Trans. Amer. Math. Soc. 349 (1997), 973-995.
  4. S. A. Argyros and V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13 (2000), 243-294.
  5. S. A. Argyros and I. Gasparis, Unconditional structures of weakly null sequences, Trans. Amer. Math. Soc., to appear.
  6. S. A. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157-193.
  7. P. Cembranos, The hereditary Dunford-Pettis property on C(K,E), Illinois J. Math. 31 (1987), 365-373.
  8. I. Gasparis, A dichotomy theorem for subsets of the power set of the natural numbers, Proc. Amer. Math. Soc., to appear.
  9. A. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1994.
  10. K. Kuratowski, Applications of the Baire-category method to the problem of independent sets, Fund. Math. 81 (1973), 65-72.
  11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, II, Ergeb. Math. Grenzgeb. 92, 97, Springer, Berlin, 1977, 1979.
  12. J. Mycielski, Almost every function is independent, Fund. Math. 81 (1973), 43-48.
  13. E. Odell, On quotients of Banach spaces having shrinking unconditional bases, Illinois J. Math. 36 (1992), 681-695.
  14. E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to l1 and distortion in asymptotic l1 spaces, J. Funct. Anal. 150 (1997), 101-145.
  15. J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62.
Pages:
273-300
Main language of publication
English
Received
1999-12-01
Accepted
2000-02-14
Published
2000
Exact and natural sciences