ArticleOriginal scientific text

Title

On Bárány's theorems of Carathéodory and Helly type

Authors 1

Affiliations

  1. I. Mathematisches Institut, Freie Universität Berlin, Arnimallee 2-6, D-14195 Berlin, Germany

Abstract

The paper begins with a self-contained and short development of Bárány's theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows: if Cn, n=1,2,..., are families of closed convex sets in a bounded subset of a separable Banach space X such that there exists a positive ε0 with CCn(C)ε= for ε<ε0, then there are CnCn with n(Cn)ε= for all ε<ε0; here (C)ε denotes the collection of all x with distance at most ε to C.

Keywords

Krein-Milman theorem, Helly, Helly-type theorem, Bárány, Carathéodory, RNP

Bibliography

  1. N. Alon and G. Kalai, Bounding the piercing number, Discrete Comput. Geom. 13 (1995), 245-256.
  2. M. Balaj and K. Nikodem, Remarks on Bárány's theorem and affine selections, preprint.
  3. I. Bárány, A generalization of Carathéodory's theorem, Discrete Math. 40 (1982), 141-152.
  4. I. Bárány, Carathéodory's theorem, colourful and applicable, in: Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc., 1997, 11-21.
  5. E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48.
  6. R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993.
  7. J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  8. J. Eckhoff, Helly, Radon, and Carathéodory type theorems, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 389-448.
  9. R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
  10. F. W. Levi, Eine Ergänzung zum Hellyschen Satze, Arch. Math. (Basel) 4 (1953), 222-224.
  11. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964).
  12. F. A. Valentine, Convex Sets, McGraw-Hill, 1964; reprinted by R. E. Krieger, 1976.
Pages:
235-250
Main language of publication
English
Received
1999-08-10
Accepted
2000-04-11
Published
2000
Exact and natural sciences