ArticleOriginal scientific text
Title
On Bárány's theorems of Carathéodory and Helly type
Authors 1
Affiliations
- I. Mathematisches Institut, Freie Universität Berlin, Arnimallee 2-6, D-14195 Berlin, Germany
Abstract
The paper begins with a self-contained and short development of Bárány's theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows: if , n=1,2,..., are families of closed convex sets in a bounded subset of a separable Banach space X such that there exists a positive with for , then there are with for all ; here denotes the collection of all x with distance at most ε to C.
Keywords
Krein-Milman theorem, Helly, Helly-type theorem, Bárány, Carathéodory, RNP
Bibliography
- N. Alon and G. Kalai, Bounding the piercing number, Discrete Comput. Geom. 13 (1995), 245-256.
- M. Balaj and K. Nikodem, Remarks on Bárány's theorem and affine selections, preprint.
- I. Bárány, A generalization of Carathéodory's theorem, Discrete Math. 40 (1982), 141-152.
- I. Bárány, Carathéodory's theorem, colourful and applicable, in: Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc., 1997, 11-21.
- E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48.
- R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993.
- J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- J. Eckhoff, Helly, Radon, and Carathéodory type theorems, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 389-448.
- R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
- F. W. Levi, Eine Ergänzung zum Hellyschen Satze, Arch. Math. (Basel) 4 (1953), 222-224.
- J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964).
- F. A. Valentine, Convex Sets, McGraw-Hill, 1964; reprinted by R. E. Krieger, 1976.