ArticleOriginal scientific text
Title
Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities
Authors 1, 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
We show that in the class of compact sets K in with an analytic parametrization of order m, the sets with Zariski dimension m are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for tangential derivatives of (the traces of) polynomials on K.
Keywords
pluricomplex Green function, Siciak extremal function, traces of polynomials on semialgebraic sets, Zariski dimension, Bernstein and van der Corput-Schaake type inequalities
Bibliography
- [Ba1] M. Baran, Siciak's extremal function of convex sets in
, Ann. Polon. Math. 48 (1988), 275-280. - [Ba2] M. Baran, Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in
, Michigan Math. J. 39 (1992), 395-404. - [Ba3] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in
, Proc. Amer. Math. Soc. 123 (1995), 485-494. - [Ba4] M. Baran, Bernstein type theorems for compact sets in
revisited, J. Approx. Theory 79 (1994), 190-198. - [Ba5] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994), 69-79.
- [BaPl1] M. Baran and W. Pleśniak, Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves, Studia Math. 125 (1997), 83-96.
- [BaPl2] M. Baran and W. Pleśniak, Polynomial inequalities on algebraic sets, this issue, 209-219.
- [BeT] E. Bedford and B. A. Taylor, The complex equilibrium measure of a symmetric convex set in
, Trans. Amer. Math. Soc. 294 (1986), 705-717. - [BeRi] R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
- [Bern] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. Roy. Belg. 4 (2) (1912), 1-103.
- [BLMT] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of
, Indiana Univ. Math. J. 44 (1995), 115-138. - [BLT] L. Bos, N. Levenberg and B. A. Taylor, Characterization of smooth, compact algebraic curves in
, in: Topics in Complex Analysis, P. Jakóbczak and W. Pleśniak (eds.), Banach Center Publ. 31, Inst. Math. Polish Acad. Sci., Warszawa, 1995, 125-134. - [BoMi1] L. Bos and P. Milman, On Markov and Sobolev type inequalities on compact subsets in
, in: Topics in Polynomials in One and Several Variables and Their Applications, Th. Rassias et al. (eds.), World Scientific, Singapore, 1992, 81-100. - [BoMi2] L. Bos and P. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal. 5 (1995), 853-923.
- [Bru] A. Brudnyi, A Bernstein-type inequality for algebraic functions, Indiana Univ. Math. J. 46 (1997), 93-116.
- [CS1] J. G. van der Corput und G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2 (1935), 321-361.
- [CS2] J. G. van der Corput und G. Schaake, Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome, ibid. 3 (1936), 128.
- [DŁS] Z. Denkowska, S. Łojasiewicz et S. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536.
- [FeNa1] C. Fefferman and R. Narasimhan, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier (Grenoble) 43 (1993), 1319-1348.
- [FeNa2] C. Fefferman and R. Narasimhan, On the polynomial-like behavior of certain algebraic functions, ibid. 44 (1994), 1091-1179.
- [FeNa3] C. Fefferman and R. Narasimhan, A local Bernstein inequality on real algebraic varieties, Math. Z. 223 (1996), 673-692.
- [Hir] H. Hironaka, Introduction to Real-Analytic Sets and Real-Analytic Maps, Istituto Matematico 'L. Tonelli', Pisa, 1973.
- [Jos] B. Josefson, On the equivalence between locally and globally polar sets for plurisubharmonic functions in
, Ark. Mat. 16 (1978), 109-115. - [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.
- [Lu] M. Lundin, The extremal plurisuhbarmonic function for the complement of convex subsets of
, Michigan Math. J. 32 (1985), 196-201. - [PaPl1] W. Pawłucki and W. Pleśniak, Markov's inequality and
functions on sets with polynomial cusps, Math. Ann. 275 (1986), 467-480. - [PaPl2] W. Pawłucki and W. Pleśniak, Extension of
functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. - [Pl1] W. Pleśniak, Markov's inequality and the existence of an extension operator for
functions, J. Approx. Theory 61 (1990), 106-117. - [Pl2] W. Pleśniak, Recent progress in multivariate Markov inequality, in: Approximation Theory (In Memory of A. K. Varma), N. K. Govil et al. (eds.), Pure Appl. Math. 212, Marcel Dekker, New York, 1998, 449-464.
- [RoYo] N. Roytwarf and Y. Yomdin, Bernstein classes, Ann. Inst. Fourier (Grenoble) 47 (1997), 825-858.
- [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502.
- [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
- [Si2] J. Siciak, Extremal plurisubharmonic functions in
, Ann. Polon. Math. 39 (1981), 175-211.