ArticleOriginal scientific text

Title

Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces

Authors 1

Affiliations

  1. Department of Mathematics, Toyo University, Kawagoe, Saitama 350-8585 Japan

Abstract

We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence μ={μn} of positive numbers and a sequence f={fn} of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for {fn(T)} is defined by D[f,μ;z](T) = ∑_{n=0}^{∞} e^{-μ_nz} f_n(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.

Bibliography

  1. T. M. Apostol, Mathematical Analysis, Addison-Wesley, Reading, MA, 1974.
  2. N. Dunford, Spectral theory I. Convergence to projection, Trans. Amer. Math. Soc. 54 (1943), 185-217.
  3. N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Pure Appl. Math., Interscience, New York, 1958.
  4. E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246-269.
  5. K. B. Laursen and M. Mbekhta, Operators with finite chain length and ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448.
  6. M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
  7. M. Lin, On the uniform ergodic theorem II, ibid. 46 (1974), 217-225.
  8. M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
  9. G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Providence, 1939.
  10. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980.
  11. T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces, Illinois J. Math. 42 (1998), 525-543; Correction, ibid. 43 (1999), 800-801.
Pages:
69-83
Main language of publication
English
Received
1999-07-08
Accepted
2000-03-31
Published
2000
Exact and natural sciences