ArticleOriginal scientific text

Title

Non-regularity for Banach function algebras

Authors 1, 2

Affiliations

  1. School of Mathematical Sciences, University of Nottingham, NG7 2RD, U.K.
  2. Department of Mathematical Sciences, University of Aberdeen, AB24 3UE, U.K.

Abstract

Let A be a unital Banach function algebra with character space ΦA. For xΦA, let Mx and Jx be the ideals of functions vanishing at x and in a neighbourhood of x, respectively. It is shown that the hull of Jx is connected, and that if x does not belong to the Shilov boundary of A then the set {yΦA:MxJy} has an infinite connected subset. Various related results are given.

Bibliography

  1. R. J. Archbold and C. J. K. Batty, On factorial states of operator algebras, III, J. Operator Theory 15 (1986), 53-81.
  2. H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Funct. Anal. 13 (1973), 28-50.
  3. J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1982.
  4. J. F. Feinstein and D. W. B. Somerset, Strong regularity for uniform algebras, in: Proc. 3rd Function Spaces Conference (Edwardsville, IL, 1998), Contemp. Math. 232, Amer. Math. Soc., 1999, 139-149.
  5. P. Gorkin and R. Mortini, Synthesis sets in H+C, Indiana Univ. Math. J., to appear.
  6. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
  7. J. L. Kelley, General Topology, Van Nostrand, Princeton, NJ, 1955.
  8. M. M. Neumann, Commutative Banach algebras and decomposable operators, Monatsh. Math. 113 (1992), 227-243.
  9. T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. 1, Cambridge Univ. Press, New York, 1994.
  10. W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.
  11. W. Rudin, Real and Complex Analysis, Tata McGraw-Hill, New Delhi, 1974.
  12. S. Sidney, More on high-order non-local uniform algebras, Illinois J. Math. 18 (1974), 177-192.
  13. D. W. B. Somerset, Minimal primal ideals in Banach algebras, Math. Proc. Cambridge Philos. Soc. 115 (1994), 39-52.
  14. D. W. B. Somerset, Ideal spaces of Banach algebras, Proc. London Math. Soc. (3) 78 (1999), 369-400.
  15. G. Stolzenberg, The maximal ideal space of functions locally in an algebra, Proc. Amer. Math. Soc. 14 (1963), 342-345.
  16. E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, New York, 1971.
  17. J. Wermer, Banach algebras and analytic functions, Adv. Math. 1 (1961), 51-102.
  18. D. R. Wilken, Approximate normality and function algebras on the interval and the circle, in: Function Algebras (New Orleans, 1965), Scott-Foresman, Chicago, IL, 1966, 98-111.
Pages:
53-68
Main language of publication
English
Received
1999-04-27
Published
2000
Exact and natural sciences