ArticleOriginal scientific text
Title
Weighted weak type (1,1) estimates for oscillatory singular integrals
Authors 1
Affiliations
- Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan
Abstract
We consider the -weights and prove the weighted weak type (1,1) inequalities for certain oscillatory singular integrals.
Keywords
rough operators, oscillatory singular integrals
Bibliography
- S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Math. Soc. 281 (1984), 77-107.
- S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155.
- S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) and weighted
estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. - M. Christ, Hilbert transforms along curves, I: Nilpotent groups, Ann. of Math. 122 (1985), 575-596.
- M. Christ, Weak type (1,1) bounds for rough operators, ibid. 128 (1988), 19-42.
- M. Christ, Weak type endpoint bounds for Bochner-Riesz multipliers, Rev. Mat. Iberoamericana 3 (1987), 25-31.
- M. Christ and J. L. Rubio de Francia, Weak type (1,1) bounds for rough operators, II, Invent. Math. 93 (1988), 225-237.
- J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer, 1983.
- F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194.
- S. Sato, Some weighted weak type estimates for rough operators, Math. Nachr. 187 (1997), 211-240.
- A. Vargas, Weighted weak type (1,1) bounds for rough operators, J. London Math. Soc. (2) 54 (1996), 297-310