ArticleOriginal scientific text
Title
A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Abstract
It is proved that if satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the space on the product domain . This implies an estimate of the norm of the multiplier transformation of m on as p→1. Precisely we get . This bound is the best possible in general.
Bibliography
- E. Berkson, J. Bourgain, A. Pełczyński and M. Wojciechowski, Canonical Sobolev projections which are of weak type (1,1), submitted to Mem. Amer. Math. Soc.
- [B] J. Bourgain, On the behavior of the constant in the Littlewood-Paley inequality, in: Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, 202-208.
- [C] L. Carleson, Two remarks on
and BMO, Adv. Math. 22 (1976), 269-277. - S. Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 455-468.
- S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and
theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. - [D] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
- [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.
- [FS] C. Fefferman and E. M. Stein, Hardy spaces of several variables, Acta Math. 129 (1972), 137-193.
- [F1] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126 (1987), 109-130.
- [F2] R. Fefferman, Some topics from harmonic analysis and partial differential equations, in: Essays on Fourier analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, 175-210.
- [Hö] L. Hö rmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
- [Lu] S. Z. Lu, Four Lectures on Real
Spaces, World Sci., 1995. - [M] V. G. Maz'ya, Sobolev Spaces, Leningrad Univ. Press, 1985.
- [Mu] P. F. X. Müller, Holomorphic martingales and interpolation between Hardy spaces, J. Anal. Math. 61 (1993), 327-337.
- [MC] C. A. McCarthy,
, Israel J. Math. 5 (1967), 249-271. - [P] A. Pełczyński, Boundedness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators, in: Analysis at Urbana 1 (Proceedings of Special Year in Modern Analysis at the Univ. of Illinois, 1986-87), London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press 1989, 395-415.
- [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
- [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149.
- [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.
- [X] Q. Xu, Some properties of the quotient space
, Illinois J. Math. 37 (1993), 437-454.