ArticleOriginal scientific text

Title

A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Abstract

It is proved that if m:d satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the H1 space on the product domain d1×...×dk. This implies an estimate of the norm N(m,Lp(d) of the multiplier transformation of m on Lp(d) as p→1. Precisely we get N(m,Lp(d))(p-1)-k. This bound is the best possible in general.

Bibliography

  1. E. Berkson, J. Bourgain, A. Pełczyński and M. Wojciechowski, Canonical Sobolev projections which are of weak type (1,1), submitted to Mem. Amer. Math. Soc.
  2. [B] J. Bourgain, On the behavior of the constant in the Littlewood-Paley inequality, in: Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, 202-208.
  3. [C] L. Carleson, Two remarks on H1 and BMO, Adv. Math. 22 (1976), 269-277.
  4. S. Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 455-468.
  5. S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and Hp theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43.
  6. [D] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
  7. [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.
  8. [FS] C. Fefferman and E. M. Stein, Hardy spaces of several variables, Acta Math. 129 (1972), 137-193.
  9. [F1] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126 (1987), 109-130.
  10. [F2] R. Fefferman, Some topics from harmonic analysis and partial differential equations, in: Essays on Fourier analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, 175-210.
  11. [Hö] L. Hö rmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
  12. [Lu] S. Z. Lu, Four Lectures on Real Hp Spaces, World Sci., 1995.
  13. [M] V. G. Maz'ya, Sobolev Spaces, Leningrad Univ. Press, 1985.
  14. [Mu] P. F. X. Müller, Holomorphic martingales and interpolation between Hardy spaces, J. Anal. Math. 61 (1993), 327-337.
  15. [MC] C. A. McCarthy, cp, Israel J. Math. 5 (1967), 249-271.
  16. [P] A. Pełczyński, Boundedness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators, in: Analysis at Urbana 1 (Proceedings of Special Year in Modern Analysis at the Univ. of Illinois, 1986-87), London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press 1989, 395-415.
  17. [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
  18. [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149.
  19. [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.
  20. [X] Q. Xu, Some properties of the quotient space L1TdH1(Dd), Illinois J. Math. 37 (1993), 437-454.
Pages:
273-287
Main language of publication
English
Received
1999-12-10
Accepted
2000-03-31
Published
2000
Exact and natural sciences