ArticleOriginal scientific text
Title
On the size of approximately convex sets in normed spaces
Authors 1, 1, 2
Affiliations
- Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.
- Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A.
Abstract
Let X be a normed space. A set A ⊆ X is approximately convex} if d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with and , where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.
Bibliography
- J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180.
- R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, ibid. 34 (1981), 304-314.
- E. Casini and P. L. Papini, Almost convex sets and best approximation, Ricerche Mat. 40 (1991), 299-310.
- E. Casini and P. L. Papini, A counterexample to the infinity version of the Hyers and Ulam stability theorem, Proc. Amer. Math. Soc. 118 (1993), 885-890.
- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
- J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1977.
- S. J. Dilworth, R. Howard and J. W. Roberts, Extremal approximately convex functions and estimating the size of convex hulls, Adv. Math. 148 (1999), 1-43.
- J. W. Green, Approximately subharmonic functions, Duke Math. J. 19 (1952), 499-504.
- D. H. Hyers, G. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
- D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828.
- M. Laczkovich, The local stability of convexity, affinity and of the Jensen equation, Aequationes Math., to appear.
- J.-O. Larsson, Studies in the geometrical theory of Banach spaces. Part 5: Almost convex sets in Banach spaces of type p,p>1, Ph.D. Thesis, Uppsala Univ., 1987.
- M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin, 1977.
- I. P. Natanson, Theory of Functions of a Real Variable, Vol. 1, Ungar, New York, 1961.
- C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), 103-108.
- G. Pisier, Sur les espaces qui ne contiennent pas de
uniformément, Séminaire Maurey-Schwartz 1973-74, École Polytechnique, Paris, 1974. - R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970.
- S. J. Szarek, On the geometry of the Banach-Mazur compactum, in: Functional Analysis (Austin, TX, 1987/1989), Lecture Notes in Math. 1470, Springer, Berlin, 1991, 48-59.