ArticleOriginal scientific text

Title

On the size of approximately convex sets in normed spaces

Authors 1, 1, 2

Affiliations

  1. Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.
  2. Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A.

Abstract

Let X be a normed space. A set A ⊆ X is approximately convex} if d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with (A,Co(A))log2n-1 and diam(A)Cn(lnn)2, where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.

Bibliography

  1. J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180.
  2. R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, ibid. 34 (1981), 304-314.
  3. E. Casini and P. L. Papini, Almost convex sets and best approximation, Ricerche Mat. 40 (1991), 299-310.
  4. E. Casini and P. L. Papini, A counterexample to the infinity version of the Hyers and Ulam stability theorem, Proc. Amer. Math. Soc. 118 (1993), 885-890.
  5. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
  6. J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1977.
  7. S. J. Dilworth, R. Howard and J. W. Roberts, Extremal approximately convex functions and estimating the size of convex hulls, Adv. Math. 148 (1999), 1-43.
  8. J. W. Green, Approximately subharmonic functions, Duke Math. J. 19 (1952), 499-504.
  9. D. H. Hyers, G. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
  10. D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828.
  11. M. Laczkovich, The local stability of convexity, affinity and of the Jensen equation, Aequationes Math., to appear.
  12. J.-O. Larsson, Studies in the geometrical theory of Banach spaces. Part 5: Almost convex sets in Banach spaces of type p,p>1, Ph.D. Thesis, Uppsala Univ., 1987.
  13. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991.
  14. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin, 1977.
  15. I. P. Natanson, Theory of Functions of a Real Variable, Vol. 1, Ungar, New York, 1961.
  16. C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), 103-108.
  17. G. Pisier, Sur les espaces qui ne contiennent pas de n1 uniformément, Séminaire Maurey-Schwartz 1973-74, École Polytechnique, Paris, 1974.
  18. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970.
  19. S. J. Szarek, On the geometry of the Banach-Mazur compactum, in: Functional Analysis (Austin, TX, 1987/1989), Lecture Notes in Math. 1470, Springer, Berlin, 1991, 48-59.
Pages:
213-241
Main language of publication
English
Received
1999-11-30
Published
2000
Exact and natural sciences