ArticleOriginal scientific text
Title
Composition operators and the Hilbert matrix
Authors 1, 1
Affiliations
- Department of Mathematics, University of Thessaloniki, 54006 Thessaloniki, Greece
Abstract
The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.
Bibliography
- [CS] J. A. Cima and D. A. Stegenga, Hankel operators on
, in: Analysis in Urbana, Vol. I, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, 1989, 133-150. - [DU] P. L. Duren, Theory of
Spaces, Academic Press, New York, 1970. - [CM] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.
- [HLP] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988.
- [PA] J. R. Partington, An Introduction to Hankel Operators, London Math. Soc. Student Texts 13, Cambridge Univ. Press, 1988.
- [SH] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993.
- [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1978.