ArticleOriginal scientific text

Title

Composition operators and the Hilbert matrix

Authors 1, 1

Affiliations

  1. Department of Mathematics, University of Thessaloniki, 54006 Thessaloniki, Greece

Abstract

The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.

Bibliography

  1. [CS] J. A. Cima and D. A. Stegenga, Hankel operators on Hp, in: Analysis in Urbana, Vol. I, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, 1989, 133-150.
  2. [DU] P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
  3. [CM] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.
  4. [HLP] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988.
  5. [PA] J. R. Partington, An Introduction to Hankel Operators, London Math. Soc. Student Texts 13, Cambridge Univ. Press, 1988.
  6. [SH] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993.
  7. [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1978.
Pages:
191-198
Main language of publication
English
Received
1999-04-29
Accepted
2000-02-01
Published
2000
Exact and natural sciences