ArticleOriginal scientific text

Title

On the bundle convergence of double orthogonal series in noncommutative L2-spaces

Authors 1, 2

Affiliations

  1. Bolyai Institute University of Szeged Aradi, vertanuk tere 1, 6720 Szeged, Hungary
  2. Centre de Mathématiques et d'Informatique, Université de Provence, 39 Rue Joliot-Curie, 13453 Marseille, Cedex 13, France

Abstract

The notion of bundle convergence in von Neumann algebras and their L2-spaces for single (ordinary) sequences was introduced by Hensz, Jajte, and Paszkiewicz in 1996. Bundle convergence is stronger than almost sure convergence in von Neumann algebras. Our main result is the extension of the two-parameter Rademacher-Men'shov theorem from the classical commutative case to the noncommutative case. To our best knowledge, this is the first attempt to adopt the notion of bundle convergence to multiple series. Our method of proof is different from the classical one, because of the lack of the triangle inequality in a noncommutative von Neumann algebra. In this context, bundle convergence resembles the regular convergence introduced by Hardy in the classical case. The noncommutative counterpart of convergence in Pringsheim's sense remains to be found.

Keywords

von Neumann algebra, faithful and normal state, completion, Gelfand-Naimark-Segal representation theorem, bundle convergence, almost sure convergence, regular convergence, orthogonal sequence of vectors in L2, Rademacher-Men'shov theorem, convergence in Pringsheim's sense

Bibliography

  1. R. P. Agnew, On double orthogonal series, Proc. London Math. Soc. (2) 33 (1932), 420-434.
  2. G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, Oxford, 1961.
  3. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien. (Algèbres de von Neumann), deuxième edition, Gauthier-Villars, Paris, 1969.
  4. G. H. Hardy, On the convergence of certain multiple series, Proc. Cambridge Philos. Soc. 19 (1916-1919), 86-95.
  5. E. Hensz and R. Jajte, Pointwise convergence theorems in L2 over a von Neumann algebra, Math. Z. 193 (1986), 413-429.
  6. E. Hensz, R. Jajte, and A. Paszkiewicz, The bundle convergence in von Neumann algebras and their L2-spaces, Studia Math. 120 (1996), 23-46.
  7. R. Jajte, Strong Limit Theorems in Non-Commutative Probability, Lecture Notes in Math. 1110, Springer, Berlin, 1985.
  8. R. Jajte, Strong Limit Theorems in Noncommutative L2-Spaces, Lecture Notes in Math. 1477, Springer, Berlin, 1991.
  9. B. Le Gac and F. Móricz, Two-parameter SLLN in noncommutative L2-spaces in terms of bundle convergence, J. Funct. Anal., submitted.
  10. F. Móricz, On the convergence in a restricted sense of multiple series, Anal. Math. 5 (1979), 135-147.
  11. F. Móricz, Some remarks on the notion of regular convergence of multiple series, Acta Math. Acad. Sci. Hungar. 41 (1983), 161-168.
Pages:
177-190
Main language of publication
English
Received
1999-04-28
Accepted
2000-12-14
Published
2000
Exact and natural sciences