PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2000 | 140 | 2 | 163-175
Tytuł artykułu

Restriction of an operator to the range of its powers

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let T be a bounded linear operator acting on a Banach space X. For each integer n, define $T_n$ to be the restriction of T to $ R(T^n) $ viewed as a map from $R(T^n)$ into $R(T^n)$. In [1] and [2] we have characterized operators T such that for a given integer n, the operator $T_n$ is a Fredholm or a semi-Fredholm operator. We continue those investigations and we study the cases where $T_n$ belongs to a given regularity in the sense defined by Kordula and Müller in[10]. We also consider the regularity of operators with topological uniform descent.
Słowa kluczowe
Czasopismo
Rocznik
Tom
140
Numer
2
Strony
163-175
Opis fizyczny
Daty
wydano
2000
otrzymano
1999-04-28
poprawiono
1999-10-01
Twórcy
autor
Bibliografia
  • [1] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Oper. Theory 34 (1999), 244-249.
  • [2] M. Berkani and M. Sarih, On semi-B-Fredholm operators, submitted.
  • [3] S. R. Caradus, Operator Theory of the Pseudo-Inverse, Queen's Papers in Pure and Appl. Math. 38 (1974), Queen's Univ., 1974.
  • [4] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
  • [5] R. Harte, On Kato non-singularity, Studia Math. 117 (1996), 107-114.
  • [6] R. Harte and W. Y. Lee, A note on the punctured neighbourhood theorem, Glasgow Math. J. 39 (1997), 269-273.
  • [7] M. A. Kaashoek, Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor, Math. Ann. 172 (1967), 105-115.
  • [8] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
  • [9] J. J. Koliha, M. Mbekhta, V. Müller and P. W. Poon, Corrigendum and addendum: "On the axiomatic theory of spectrum II", Studia Math. 130 (1998), 193-198.
  • [10] V. Kordula and V. Müller, On the axiomatic theory of spectrum, ibid. 119 (1996), 109-128.
  • [11] J. P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), 161-258.
  • [12] M. Mbekhta and M. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147.
  • [13] P. W. Poon, Spectral properties and structure theorems for bounded linear operators, thesis, Dept. of Math. and Statist., Univ. of Melbourne, 1997.
  • [14] C. Schmoeger, On a class of generalized Fredholm operators, I, Demonstratio Math. 30 (1997), 829-842.
  • [15] C. Schmoeger, On a class of generalized Fredholm operators, V, ibid. 32 (1999), 595-604.
  • [16] C. Schmoeger, On a generalized punctured neighborhood theorem in ℒ(X), Proc. Amer. Math. Soc. 123 (1995), 1237-1240.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv140i2p163bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.