ArticleOriginal scientific text

Title

Linear extension operators for restrictions of function spaces to irregular open sets

Authors 1, 2

Affiliations

  1. Mathematisches Institut, Friedrich-Schiller-Universität Jena, Germany
  2. Mathematics Department, Princeton University, Princeton, NJ 08544, U.S.A.

Abstract

Let an open set Ωn satisfy for some 0≤d≤n and ε > 0 the condition: the d-Hausdorff content Hd(ΩB)ε|B|dn for any ball B centered in Ω of volume |B|≤1. Let Hps denote the Bessel potential space on n 1 < p < ∞,s > 0, and let Hps[Ω] be the linear space of restrictions of elements of Hps to Ω endowed with the quotient space norm. We find sufficient conditions for the existence of a linear extension operator for Hps[Ω], i.e., a bounded linear operator Hps[Ω]Hps such that extΩ}= for all ⨍. The main result is that such an operator exists if (i) d > n-1 and s > (n-d)/min(p,2), or (ii) d≤n-1 and s-[s] > (n-d)/min(p,2). It is an open problem whether these assumptions are sharp.

Keywords

Sobolev spaces, Besov-Triebel-Lizorkin spaces, restrictions, extension operators, irregular domains, Hausdorff content, local polynomial approximation, complemented subspaces

Bibliography

  1. D. R. Adams, The classification problem for the capacities associated with the Besov and Triebel-Lizorkin spaces, in: Approximation and Function Spaces, Banach Center Publ. 22, PWN-Polish Sci. Publ., Warszawa, 1989, 9-24.
  2. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss. 314, Springer, Berlin, 1996.
  3. Yu. A. Brudnyĭ, Spaces defined by means of local approximation, Trudy Moskov. Mat. Obshch. 24 (1971), 69-132 (in Russian).
  4. H.-Q. Bui, M. Paluszyński, and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), 219-246.
  5. P. Bylund, Besov spaces and measures on arbitrary closed sets, Univ. of Umeå, Dept. of Math., Doctoral Thesis No 8, 1994.
  6. J. R. Dorronsoro, On the differentiability of Lipschitz-Besov functions, Trans. Amer. Math. Soc. 303 (1987), 229-240.
  7. C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
  8. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
  9. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  10. O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1-118.
  11. P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88.
  12. A. Jonsson, Besov spaces on closed sets by means of atomic decompositions, Univ. of Umeå, Dept. of Math., Research Report No 7, 1993.
  13. A. Jonsson and H. Wallin, Function Spaces on Subsets of n, Math. Reports 2, Part 1, Harwood, New York, 1984.
  14. G. A. Kalyabin, The intrinsic norming of the retractions of Sobolev spaces onto plain domains with the points of sharpness, in: Abstracts of Conference on Functional Spaces, Approximation Theory, Nonlinear Analysis in Honor of S. M. Nikol'ski(Moscow, 1995), p. 330 (in Russian).
  15. Yu. V. Netrusov, Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Trudy Mat. Inst. Steklov. 187 (1989), 162-177 (in Russian); English transl.: Proc. Steklov Inst. Math. 187 (1990), 185-203.
  16. J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130.
  17. C. A. Rogers, Hausdorff Measures, Cambridge Univ. Press, Cambridge, 1970.
  18. V. S. Rychkov, On a theorem of Bui, Paluszyński, and Taibleson, Trudy Mat. Inst. Steklov. (to appear).
  19. A. Seeger, A note on Triebel-Lizorkin spaces, in: Approximation and Function Spaces, Banach Center Publ. 22, PWN-Polish Sci. Publ., Warszawa, 1989, 391-400.
  20. P. A. Shvartsman, Extension theorems with preservation of local polynomial approximations, Yaroslavl Univ., 1986; VINITI Publ. 8.08.1986, No. 6457 (in Russian).
  21. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
  22. R. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.
  23. H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983.
  24. H. Triebel, Theory of Function Spaces II, Monogr. Math. 84, Birkhäuser, Basel, 1992.
Pages:
141-162
Main language of publication
English
Received
1999-02-08
Accepted
2000-01-24
Published
2000
Exact and natural sciences