ArticleOriginal scientific text

Title

Localizations of partial differential operators and surjectivity on real analytic functions

Authors 1

Affiliations

  1. Department of Mathematics, University of Oldenburg, D-26111 Oldenburg, Germany

Abstract

Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on an open set Ωn. Then P(D) admits shifted (generalized) elementary solutions which are real analytic on an arbitrary relatively compact open set ω ⊂ ⊂ Ω. This implies that any localization Pm,Θ of the principal part Pm is hyperbolic w.r.t. any normal vector N of ∂Ω which is noncharacteristic for Pm,Θ. Under additional assumptions Pm must be locally hyperbolic.

Keywords

partial differential operator, real analytic function, elementary solution, hyperbolicity, local hyperbolicity

Bibliography

  1. K. G. Andersson, Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat. 8 (1971), 277-302.
  2. K. G. Andersson, Global solvability of partial differential equations in the space of real analytic functions, in: Analyse Fonctionnelle et Applications (Coll. Analyse, Rio de Janeiro, August 1972), Actualités Sci. Indust. 1367, Hermann, Paris, 1975, 1-4.
  3. A. Andreotti and M. Nacinovich, Analytic Convexity and the Principle of Phragmén-Lindelöf, Scuola Norm. Sup., Pisa, 1980.
  4. G. Bengel, Das Weylsche Lemma in der Theorie der Hyperfunktionen, Math. Z. 96 (1967), 373-392.
  5. J. Bochnak, M. Coste et M. F. Roy, Géométrie Algébrique Réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987.
  6. J. M. Bony, Extensions du théorème de Holmgren, Sém. Goulaouic-Schwartz, Exp. 17, Centre Math., École Polytechnique, Palaiseau, 1976, 13 pp.
  7. J. M. Bony, Propagation of analytic and differentiable singularities for solutions of partial differential equations, Publ. Res. Inst. Math. Sci. Suppl. 12 (1976/77), 5-17.
  8. J. M. Bony and P. Schapira, Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, 81-140.
  9. R. W. Braun, The surjectivity of a constant coefficient homogeneous differential operator on the real analytic functions and the geometry of its symbol, ibid. 45 (1995), 223-249.
  10. R. W. Braun, R. Meise and D. Vogt, Application of the projective limit functor to convolution and partial differential equations, in: T. Terzioğlu (ed.), Advances in the Theory of Fréchet Spaces, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 287, Kluwer, 1989, 29-46.
  11. R. W. Braun, R. Meise and D. Vogt, Characterization of the linear partial differential operators with constant coefficients, which are surjective on non-quasianalytic classes of Roumieu type on, Math. Nachr 168 (1994), 19-54.
  12. L. Cattabriga ed E. de Giorgi, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027.
  13. M. L. de Cristoforis, Soluzioni con lacune di certi operatori differenziali lineari, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 8 (1984), 137-142.
  14. J. Fehrman, Hybrids between hyperbolic and elliptic differential operators with constant coefficients, Ark. Mat. 13 (1975), 209-235.
  15. L. Gårding, Local hyperbolicity, Israel J. Math. 13 (1972), 65-81.
  16. A. Grigis, P. Schapira et J. Sjöstrand, Propagation de singularités analytiques pour les solutions des opérateurs à caractéristiques multiples, C. R. Acad. Sci. Paris Sér. I 293 (1981), 397-400.
  17. N. Hanges, Propagation of analyticity along real bicharacteristics, Duke Math. J. 48 (1981), 269-277.
  18. N. Hanges and J. Sjöstrand, Propagation of analyticity for a class of non-micro-characteristic operators, Ann. of Math. 116 (1982), 559-577.
  19. L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 671-704.
  20. L. Hörmander, On the singularities of solutions of partial differential equations with constant coefficients, Israel J. Math. 13 (1972), 82-105.
  21. L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-183.
  22. L. Hörmander, The Analysis of Linear Partial Differential Operators I,II, Grundlehren Math. Wiss. 256, 257, Springer, Berlin, 1983.
  23. A. Kaneko, On the global existence of real analytic solutions of linear partial differential equations on unbounded domain, J. Fac. Sci. Tokyo Sect. IA Math. 32 (1985), 319-372.
  24. M. Kashiwara and T. Kawai, Microhyperbolic pseudodifferential operators I, J. Math. Soc. Japan 27 (1975), 359-404.
  25. T. Kawai, On the global existence of real analytic solutions of linear differential equations I, ibid. 24 (1972), 481-517.
  26. M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275.
  27. M. Langenbruch, Continuation of Gevrey regularity for solutions of partial differential operators, in: S. Dierolf, S. Dineen and P. Domański (eds.), Functional Analysis, Proc. First Workshop at Trier University, de Gruyter, 1996, 249-280.
  28. M. Langenbruch, Surjective partial differential operators on Gevrey classes and their localizations at infinity, Linear Topol. Spaces Complex Anal. 3 (1997), 95-111,
  29. M. Langenbruch, Surjectivity of partial differential operators in Gevrey classes and extension of regularity, Math. Nachr. 196 (1998), 103-140.
  30. M. Langenbruch, Extension of analyticity for solutions of partial differential operators, Note Mat. 17 (1997), 29-59.
  31. M. Langenbruch, Surjective partial differential operators on spaces of real analytic functions, preprint.
  32. P. Laubin, Propagation des singularités analytiques pour des opérateurs à caractéristiques involutives de multiplicité variable, Portugal. Math. 41 (1982), 83-90.
  33. P. Laubin, Analyse microlocale des singularités analytiques, Bull. Soc. Roy. Sci. Liège 52 (1983), 103-212.
  34. O. Liess, Necessary and sufficient conditions for propagation of singularities for systems of partial differential equations with constant coefficients, Comm. Partial Differential Equations 8 (1983), 89-198.
  35. R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992.
  36. T. Miwa, On the global existence of real analytic solutions of systems of linear differential equations with constant coefficients, Proc. Japan Acad. 49 (1973), 500-502.
  37. L. C. Piccinini, Non surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on n, Boll. Un. Mat. Ital. (4) 7 (1973), 12-28.
  38. J. Sjöstrand, Singularités Analytiques Microlocales, Astérisque 95 (1982), 1-166.
  39. G. Zampieri, Operatori differenziali a coefficienti costanti di tipo iperbolico-(ipo) ellittico, Rend. Sem. Mat. Univ. Padova 72 (1984), 27-44.
  40. G. Zampieri, Propagation of singularity and existence of real analytic solutions of locally hyperbolic equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), 373-390.
  41. G. Zampieri, An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations, Boll. Un. Mat. Ital. B (6) 5 (1986), 361-392.
Pages:
15-40
Main language of publication
English
Received
1999-02-01
Accepted
1999-12-13
Published
2000
Exact and natural sciences