[1] D. Alspach, The dual of the Bourgain-Delbaen space, preprint, Oklahoma State Univ., 1998.
[2] S. M. Bates, On smooth non-linear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220.
[3] M. Boddington, On a certain class of recursively defined norms, in preparation.
[4] J. Bourgain, New Classes of $ℒ^p$-Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981.
[5] J. Bourgain and F. Delbaen, A class of special $ℒ^∞$-spaces, Acta Math. 145 (1980), 155-176.
[6] G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, preprint.
[7] P. Hájek, Smooth functions on $c_0$, Israel J. Math. 104 (1998), 17-28.
[8] W. B. Johnson, A uniformly convex Banach space which contains no $ℓ_p$, Compositio Math. 29 (1974), 179-190.
[9] W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), 430-470.
[10] B. Maurey, V. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, in: Oper. Theory Adv. Appl. 77, Birkhäuser, Basel, 1995, 149-175.