ArticleOriginal scientific text

Title

Subspaces of the Bourgain-Delbaen space

Authors 1

Affiliations

  1. Brasenose College, Oxford OX1 4AJ, U.K.

Abstract

It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space Xa,b has a subspace isomorphic to some p.

Keywords

1-predual, -space, p-space

Bibliography

  1. D. Alspach, The dual of the Bourgain-Delbaen space, preprint, Oklahoma State Univ., 1998.
  2. S. M. Bates, On smooth non-linear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220.
  3. M. Boddington, On a certain class of recursively defined norms, in preparation.
  4. J. Bourgain, New Classes of p-Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981.
  5. J. Bourgain and F. Delbaen, A class of special -spaces, Acta Math. 145 (1980), 155-176.
  6. G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, preprint.
  7. P. Hájek, Smooth functions on c0, Israel J. Math. 104 (1998), 17-28.
  8. W. B. Johnson, A uniformly convex Banach space which contains no p, Compositio Math. 29 (1974), 179-190.
  9. W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), 430-470.
  10. B. Maurey, V. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, in: Oper. Theory Adv. Appl. 77, Birkhäuser, Basel, 1995, 149-175.
Pages:
275-293
Main language of publication
English
Received
1999-03-29
Published
2000
Exact and natural sciences