ArticleOriginal scientific text
Title
Subspaces of the Bourgain-Delbaen space
Authors 1
Affiliations
- Brasenose College, Oxford OX1 4AJ, U.K.
Abstract
It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space has a subspace isomorphic to some .
Keywords
Bibliography
- D. Alspach, The dual of the Bourgain-Delbaen space, preprint, Oklahoma State Univ., 1998.
- S. M. Bates, On smooth non-linear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220.
- M. Boddington, On a certain class of recursively defined norms, in preparation.
- J. Bourgain, New Classes of
-Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981. - J. Bourgain and F. Delbaen, A class of special
-spaces, Acta Math. 145 (1980), 155-176. - G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, preprint.
- P. Hájek, Smooth functions on
, Israel J. Math. 104 (1998), 17-28. - W. B. Johnson, A uniformly convex Banach space which contains no
, Compositio Math. 29 (1974), 179-190. - W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), 430-470.
- B. Maurey, V. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, in: Oper. Theory Adv. Appl. 77, Birkhäuser, Basel, 1995, 149-175.