ArticleOriginal scientific text
Title
A geometrical solution of a problem on wavelets
Authors 1
Affiliations
- Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France
Abstract
We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: ``most'' of the orthonormal compactly supported wavelet bases for , of any regularity, are nonseparable
Bibliography
- [AK] S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Res. Inst. Publ. 25, Springer, 1992.
- [A1] A. Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for
of arbitrarily high regularity, Rev. Mat. Iberoamericana 15 (1999), 37-58. - [A2] A. Ayache, Bases multivariées d'ondelettes, orthonormales, non séparables, à support compact et de régularité arbitraire, Phd Thesis, Ceremade, Univ. Paris Dauphine, 1997.
- [BW] E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in
, SIAM J. Math. Anal. 30 (1999), 678-697. - [CHM] C. Cabrelli, C. Heil and U. Molter, Self-similarity and multiwavelets in higher dimensions, preprint, 1999.
- [C] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459.
- [CGV] A. Cohen, K. Gröchenig and L. F. Villemoes, Regularity of multivariate refinable functions, preprint.
- [D] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
- [J] R. Q. Jia, Characterization of smoothness of multivariate refinable functions in sobolev spaces, preprint.
- [KLe] J. P. Kahane and P. G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon and Breach, 1995.
- [L] W. M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), 1898-1901.
- [LR] W. M. Lawton and H. L. Resnikoff, Multidimensional wavelet bases, preprint, 1991.
- [M] Y. Meyer, Ondelettes et opérateurs, Hermann, 1990.
- [RW] H. L. Resnikoff and R. O. Wells Jr., Wavelet Analysis: The Scalable Structure of Information, Springer, 1998.
- [W] R. O. Wells Jr., Parametrizing smooth compactly supported wavelets, Trans. Amer. Math. Soc. 338 (1993), 919-931.