ArticleOriginal scientific textComposition operators:
Title
Composition operators: to the Bloch space to
Authors 1, 2
Affiliations
- Institute of Analysis, TU-Braunschweig PK 14(Forum) D-38106 Braunschweig, Germany
- School of Mathematical Sciences, Peking University, Beijing 100871, China
Abstract
Let ,B and Q_β be the weighted Nevanlinna space, the Bloch space and the Q space, respectively. Note that B and are Möbius invariant, but is not. We characterize, in function-theoretic terms, when the composition operator induced by an analytic self-map ϕ of the unit disk defines an operator , , which is bounded resp. compact.
Keywords
composition operator, boundedness, compactness, , β, Q_β
Bibliography
- [AS] A. Aleman and A. G. Siskakis, An integral operator on
, Complex Variables 28 (1995), 149-158. - [AL] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, in: Complex Analysis and its Applications, Pitman Res. Notes in Math. 305, Longman, 1994, 136-146.
- [ANZ] R. Aulaskari, M. Norwak and R. Zhao, The n-the derivative characterizations of Möbius invariant Dirichlet spaces, Bull. Austral. Math. Soc. 58 (1998), 43-56.
- [ASX] R. Aulaskari, D. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485-506.
- [AXZ] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subclasses of BMOA and UBC, Analysis 15 (1995), 101-121.
- [Ba] A. Baernstein II, Analytic functions of bounded mean oscillation, in: Aspects of Contemporary Complex Analysis, Academic Press, London, 1980, 2-26.
- [BCM] P. S. Bourdon, J. A. Cima and A. L. Matheson, Compact composition operators on BMOA, Trans. Amer. Math. Soc. 351 (1999), 2183-2196.
- [EX] M. Essén and J. Xiao, Some results on
spaces, 0 < p < 1, J. Reine Angew. Math. 485 (1997), 173-195. - [J] H. Jarchow, Locally Convex Spaces, Teubner, 1981.
- [JX] H. Jarchow and J. Xiao, Composition operators between Nevanlinna classes and Bergman spaces with weights, J. Operator Theory, to appear.
- [L] D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), 345-368.
- [MM] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679-2687.
- [NX] A. Nicolau and J. Xiao, Bounded functions in Möbius invariant Dirichlet spaces, J. Funct. Anal. 150 (1997), 383-425.
- [RU] W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), 591-606.
- [SS] J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna Class, Amer. J. Math. 97 (1976), 915-936.
- [ST] J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on
, Indiana Univ. Math. J. 23 (1973), 471-496. - [SZ] W. Smith and R. Zhao, Composition operators mapping into the
spaces, Analysis 17 (1997), 239-263. - [Str] K. Stroethoff, Nevanlinna-type characterizations for the Bloch space and related spaces, Proc. Edinburgh Math. Soc. 33 (1990), 123-142.
- [T] M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Ph.D. Thesis, Michigan State Univ. 1996.
- [X1] J. Xiao, Carleson measure, atomic decomposition and free interpolation from Bloch space, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 19 (1994), 35-44.
- [X2] J. Xiao, Compact composition operators on the area-Nevanlinna class, Exposition. Math. 17 (1999), 255-264.
- [Z] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.