ArticleOriginal scientific text

Title

Stochastic representation of reflecting diffusions corresponding to divergence form operators

Authors 1, 1

Affiliations

  1. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

We obtain a stochastic representation of a diffusion corresponding to a uniformly elliptic divergence form operator with co-normal reflection at the boundary of a bounded C2-domain. We also show that the diffusion is a Dirichlet process for each starting point inside the domain.

Bibliography

  1. D. J. Aldous, Stopping time and tightness, Ann. Probab. 6 (1979), 335-340.
  2. D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa 22 (1968), 607-693.
  3. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
  4. F. Coquet and L. Słomiński, On the convergence of Dirichlet processes, Bernoulli 5 (1999), 615-639.
  5. H. Föllmer, Dirichlet processes, in: Stochastic Integrals (Durham, 1980), D. Williams (ed.), Lecture Notes in Math. 851, Springer, Berlin, 1981, 476-478.
  6. H. Föllmer, P. Protter and A. N. Shiryaev, Quadratic covariation and an extension of Itô's formula, Bernoulli 1 (1995), 149-169.
  7. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.
  8. M. Fukushima, On a decomposition of additive functionals in the strict sense for a symmetric Markov process, in: Dirichlet Forms and Stochastic Processes (Beijing, 1993), Z. Ma, M. Röckner and J. Yan (eds.), de Gruyter, Berlin, 1994, 155-169.
  9. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994.
  10. M. Fukushima and M. Tomisaki, Reflecting diffusions on Lipschitz domains with cusps-analytic construction and Skorokhod representation, Potential Anal. 4 (1995), 377-408.
  11. M. Fukushima and M. Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Related Fields 106 (1996), 521-557.
  12. A. K. Gushchin, The estimates of the solutions of boundary value problems for a second order parabolic equation, Trudy Mat. Inst. Steklov. 126 (1973), 5-45 (in Russian).
  13. A. K. Gushchin, Uniform stabilization of solutions of the second mixed problem for a parabolic equation, Mat. Sb. 119 (1982), 451-508 (in Russian).
  14. U. G. Haussmann and E. Pardoux, Time reversal of diffusions, Ann. Probab. 14 (1986), 1188-1205.
  15. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987.
  16. A. Jakubowski, J. Mémin et G. Pages, Convergence en loi des suites d'intégrales stochastiques sur l'espace D1 de Skorokhod, Probab. Theory Related Fields 81 (1989), 111-137.
  17. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985.
  18. O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, RI, 1968.
  19. P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), 511-537.
  20. T. J. Lyons and T. S. Zhang, Decomposition of Dirichlet processes and its application, Ann. Probab. 22 (1994), 494-524.
  21. T. J. Lyons and W. A. Zheng, A crossing estimate for the canonical process on a Dirichlet space and a tightness result, Astérisque 157-158 (1988), 249-271.
  22. T. J. Lyons and W. A. Zheng, On conditional diffusion processes, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 243-255.
  23. A. Millet, D. Nualart and M. Sanz, Integration by parts and time reversal for diffusion processes, Ann. Probab. 17 (1989) 208-238.
  24. A. Rozkosz, Weak convergence of diffusions corresponding to divergence form operators, Stochastics Stochastics Rep. 57 (1996), 129-157.
  25. A. Rozkosz, Stochastic representation of diffusions corresponding to divergence form operators, Stochastic Process. Appl. 63 (1996), 11-33.
  26. A. Rozkosz, On Dirichlet processes associated with second order divergence form operators, Potential Anal. (2000), to appear.
  27. A. Rozkosz and L. Słomiński, On existence and stability of weak solutions of multidimensional stochastic differential equations with measurable coefficients, Stochastic Process. Appl. 37 (1991), 187-197.
  28. A. Rozkosz and L. Słomiński, Extended convergence of Dirichlet processes, Stochastics Stochastics Rep. 65 (1998), 79-109.
  29. L. Słomiński, Necessary and sufficient conditions for extended convergence of semimartingales, Probab. Math. Statist. 7 (1986), 77-93.
  30. D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147-225.
Pages:
141-174
Main language of publication
English
Received
1999-03-15
Accepted
1999-12-09
Published
2000
Exact and natural sciences