ArticleOriginal scientific text
Title
Two-parameter Hardy-Littlewood inequality and its variants
Authors 1, 2
Affiliations
- Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
- Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China.
Abstract
Let s* denote the maximal function associated with the rectangular partial sums of a given double function series with coefficients . The following generalized Hardy-Littlewood inequality is investigated:
,
where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||_{p,μ}-convergence property of is established. These results generalize the work of Askey-Wainger [1], Balashov [2], Boas [3], Chen [5], [6], [8], [9], Marzug [15], Móricz [16]-[18], [19], Móricz-Schipp-Wade [20], Ram-Bhatia [22], Stechkin [24], Weisz [26]-[28], and Young [30].
Bibliography
- R. Askey and S. Wainger, Integrability theorems for Fourier series, Duke Math. J. 33 (1966), 223-228.
- L. A. Balashov, Series with respect to the Walsh system with monotone coefficients, Sibirsk. Mat. Zh. 12 (1971), 25-39 (in Russian).
- R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer, Berlin, 1967.
- T. W. Chaundy and A. E. Jolliffe, The uniform convergence of a certain class of trigonometric series, Proc. London Math. Soc. (2) 15 (1916), 214-216.
- C.-P. Chen, Integrability and L-convergence of multiple trigonometric series, Bull. Austral. Math. Soc. 49 (1994), 333-339.
- C.-P. Chen, Weighted integrability and
-convergence of multiple trigonometric series, Studia Math. 108 (1994), 177-190. - C.-P. Chen and G.-B. Chen, Uniform convergence of double trigonometric series, ibid. 118 (1996), 245-259.
- Y.-M. Chen, On the integrability of functions defined by trigonometric series, Math. Z. 66 (1956), 9-12.
- Y.-M. Chen, Some asymptotic properties of Fourier constants and integrability theorems, ibid. 68 (1957), 227-244.
- M. I. D'yachenko, On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75.
- S. Fridli and P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Math. Hungar. 45 (1985), 223-234.
- A. E. Jolliffe, On certain trigonometric series which have a necessary and sufficient condition for uniform convergence, Proc. Cambridge Philos. Soc. 19 (1921), 191-195.
- L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. (Szeged) 31 (1970), 279-285.
- L. Leindler, Some inequalities of Hardy-Littlewood type, Anal. Math. 20 (1994), 95-106.
- M. M. H. Marzug, Integrability theorem of multiple trigonometric series, J. Math. Anal. Appl. 157 (1991), 337-345.
- F. Móricz, On Walsh series with coefficients tending monotonically to zero, Acta Math. Acad. Sci. Hungar. 38 (1981), 183-189.
- F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with nonnegative coefficients, Anal. Math. 15 (1989), 283-290.
- F. Móricz, On double cosine, sine, and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425
- F. Móricz, On the integrability and
-convergence of double trigonometric series, Studia Math. 98 (1991), 203-225. - F. Móricz, F. Schipp and W. R. Wade, On the integrability of double Walsh series with special coefficients, Michigan Math. J. 37 (1990), 191-201.
- J. R. Nurcombe, On the uniform convergence of sine series with quasimonotone coefficients, J. Math. Anal. Appl. 166 (1992), 577-581.
- B. Ram and S. S. Bhatia, On weighted integrability of double cosine series, ibid. 208 (1997), 510-519.
- F. Schipp, P. Simon and W. R. Wade, Walsh Series, An Introduction to Dyadic Harmonic Analysis, IOP Publishing and Akadémiai Kiadó, Budapest, 1990.
- S. B. Stechkin, On power series and trigonometric series with monotone coefficients, Uspekhi Mat. Nauk 18 (1963), no. 1, 173-180 (in Russian).
- G. Szegő, Orthogonal Polynomials, 4th ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1975.
- F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
- F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
- F. Weisz, Two-parameter Hardy-Littlewood inequalities, Studia Math. 118 (1996), 175-184.
- T. F. Xie and S. P. Zhou, The uniform convergence of certain trigonometric series, J. Math. Anal. Appl. 181 (1994), 171-180.
- W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. 12 (1913), 41-70.
- A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, 1968.