ArticleOriginal scientific text

Title

Two-parameter Hardy-Littlewood inequality and its variants

Authors 1, 2

Affiliations

  1. Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
  2. Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China.

Abstract

Let s* denote the maximal function associated with the rectangular partial sums smn(x,y) of a given double function series with coefficients cjk. The following generalized Hardy-Littlewood inequality is investigated: ||s||p,μCp,α,β{Σj=0Σk=0(j̅)p-α-2(k̅)p-β-2|cjk|p}1p, where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on cjk and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||_{p,μ}-convergence property of smn(x,y) is established. These results generalize the work of Askey-Wainger [1], Balashov [2], Boas [3], Chen [5], [6], [8], [9], Marzug [15], Móricz [16]-[18], [19], Móricz-Schipp-Wade [20], Ram-Bhatia [22], Stechkin [24], Weisz [26]-[28], and Young [30].

Bibliography

  1. R. Askey and S. Wainger, Integrability theorems for Fourier series, Duke Math. J. 33 (1966), 223-228.
  2. L. A. Balashov, Series with respect to the Walsh system with monotone coefficients, Sibirsk. Mat. Zh. 12 (1971), 25-39 (in Russian).
  3. R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer, Berlin, 1967.
  4. T. W. Chaundy and A. E. Jolliffe, The uniform convergence of a certain class of trigonometric series, Proc. London Math. Soc. (2) 15 (1916), 214-216.
  5. C.-P. Chen, Integrability and L-convergence of multiple trigonometric series, Bull. Austral. Math. Soc. 49 (1994), 333-339.
  6. C.-P. Chen, Weighted integrability and L1-convergence of multiple trigonometric series, Studia Math. 108 (1994), 177-190.
  7. C.-P. Chen and G.-B. Chen, Uniform convergence of double trigonometric series, ibid. 118 (1996), 245-259.
  8. Y.-M. Chen, On the integrability of functions defined by trigonometric series, Math. Z. 66 (1956), 9-12.
  9. Y.-M. Chen, Some asymptotic properties of Fourier constants and integrability theorems, ibid. 68 (1957), 227-244.
  10. M. I. D'yachenko, On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75.
  11. S. Fridli and P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Math. Hungar. 45 (1985), 223-234.
  12. A. E. Jolliffe, On certain trigonometric series which have a necessary and sufficient condition for uniform convergence, Proc. Cambridge Philos. Soc. 19 (1921), 191-195.
  13. L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. (Szeged) 31 (1970), 279-285.
  14. L. Leindler, Some inequalities of Hardy-Littlewood type, Anal. Math. 20 (1994), 95-106.
  15. M. M. H. Marzug, Integrability theorem of multiple trigonometric series, J. Math. Anal. Appl. 157 (1991), 337-345.
  16. F. Móricz, On Walsh series with coefficients tending monotonically to zero, Acta Math. Acad. Sci. Hungar. 38 (1981), 183-189.
  17. F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with nonnegative coefficients, Anal. Math. 15 (1989), 283-290.
  18. F. Móricz, On double cosine, sine, and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425
  19. F. Móricz, On the integrability and L1-convergence of double trigonometric series, Studia Math. 98 (1991), 203-225.
  20. F. Móricz, F. Schipp and W. R. Wade, On the integrability of double Walsh series with special coefficients, Michigan Math. J. 37 (1990), 191-201.
  21. J. R. Nurcombe, On the uniform convergence of sine series with quasimonotone coefficients, J. Math. Anal. Appl. 166 (1992), 577-581.
  22. B. Ram and S. S. Bhatia, On weighted integrability of double cosine series, ibid. 208 (1997), 510-519.
  23. F. Schipp, P. Simon and W. R. Wade, Walsh Series, An Introduction to Dyadic Harmonic Analysis, IOP Publishing and Akadémiai Kiadó, Budapest, 1990.
  24. S. B. Stechkin, On power series and trigonometric series with monotone coefficients, Uspekhi Mat. Nauk 18 (1963), no. 1, 173-180 (in Russian).
  25. G. Szegő, Orthogonal Polynomials, 4th ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1975.
  26. F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
  27. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  28. F. Weisz, Two-parameter Hardy-Littlewood inequalities, Studia Math. 118 (1996), 175-184.
  29. T. F. Xie and S. P. Zhou, The uniform convergence of certain trigonometric series, J. Math. Anal. Appl. 181 (1994), 171-180.
  30. W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. 12 (1913), 41-70.
  31. A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, 1968.
Pages:
9-27
Main language of publication
English
Received
1998-07-08
Accepted
1999-06-10
Published
2000
Exact and natural sciences