ArticleOriginal scientific text

Title

Elements of C*-algebras commuting with their Moore-Penrose inverse

Authors 1

Affiliations

  1. Department of Mathematics and Statistics, The University of Melbourne Melbourne, VIC 3010, Australia.

Abstract

We give new necessary and sufficient conditions for an element of a C*-algebra to commute with its Moore-Penrose inverse. We then study conditions which ensure that this property is preserved under multiplication. As a special case of our results we recover a recent theorem of Hartwig and Katz on EP matrices.

Keywords

C*-algebra, Moore-Penrose inverse, Drazin inverse

Bibliography

  1. T. S. Baskett and I. J. Katz, Theorems on products of EPr matrices, Linear Algebra Appl. 2 (1969), 87-103.
  2. K. G. Brock, A note on commutativity of a linear operator and its Moore-Penrose inverse, Numer. Funct. Anal. Optim. 11 (1990), 673-678.
  3. S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979.
  4. M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
  5. R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77.
  6. R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138.
  7. R. Hartwig and I. J. Katz, On products of EP matrics, Linear Algebra Appl. 252 (1997), 339-345.
  8. I. J. Katz, Weigman type theorems for EPr matrices, Duke Math. J. 32 (1965), 423-428.
  9. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
  10. J. J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras, Proc. Roy. Irish Acad. Sect. A 99 (1999), 17-27.
  11. J. J. Koliha, A simple proof of the product theorem for EP matrices, Linear Algebra Appl. 294 (1999), 213-215.
  12. I. Marek and K. Žitný, Matrix Analysis for Applied Sciences, Vol. 2, Teubner, Leipzig, 1986.
  13. R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
  14. E. T. Wong, Does the generalized inverse of A commute with A?, Math. Mag. 59 (1986), 230-232.
  15. D. Djordjević, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc., to appear.
  16. G. Lešnjak, Semigroups of EP linear transformations, Linear Algebra Appl. 304 (2000), 109-118.
Pages:
81-90
Main language of publication
English
Received
1999-03-23
Accepted
2000-01-28
Published
2000
Exact and natural sciences