Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors $(e_n)$ form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.
[15] A. Gulisashvili and C. R. MacCluer, Linear chaos in the unforced quantum harmonic oscillator, J. Dynam. Systems Measurement Control 118 (1996), 337-338.
[16] D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829.
[17] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984.
[18] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York, 1981.
[19] C. Kitai, Invariant closed sets for linear operators, thesis, Univ. of Toronto, Toronto, 1982.
[20] R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, preprint.
[21] F. León-Saavedra and A. Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), 524-545.
[22] F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Trans. Amer. Math. Soc., to appear.
[23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin, 1977.
[24] G. R. MacLane, Sequences of derivatives and normal families, J. Anal. Math. 2 (1952/53), 72-87.
[25] F. Martínez-Giménez and A. Peris, Hypercyclic and chaotic backward shift operators on Köthe echelon spaces, preprint.
[26] V. Mathew, A note on hypercyclic operators on the space of entire sequences, Indian J. Pure Appl. Math. 25 (1994), 1181-1184.
[27] R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in $L^2$, Studia Math. 54 (1975), 149-159.
[28] A. Peris, Chaotic polynomials on Fréchet spaces, Proc. Amer. Math. Soc. 127 (1999), 3601-3603.
[29] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.
[30] S. Rolewicz, Metric Linear Spaces, second ed., D. Reidel, Dordrecht, 1985.
[31] H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), 765-770.
[32] H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993-1004.
[33] I. Singer, Bases in Banach Spaces. I, Springer, Berlin, 1970.
[34] I. Singer, Bases in Banach Spaces. II, Springer, Berlin, 1981.
[35] R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.
[36] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv139i1p47bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.