ArticleOriginal scientific text

Title

Hypercyclic and chaotic weighted shifts

Authors 1

Affiliations

  1. Fachbereich Mathematik, Fernuniversität Hagen, 58084 Hagen, Germany.

Abstract

Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors (en) form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.

Keywords

F-spaces, topological sequence spaces, weighted shift operators, weighted pseudo-shifts, hypercyclic operators, chaotic operators

Bibliography

  1. J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), 332-334.
  2. B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988.
  3. L. Bernal-González, Derivative and antiderivative operators and the size of complex domains, Ann. Polon. Math. 59 (1994), 267-274.
  4. L. Bernal-González, Universal functions for Taylor shifts, Complex Variables Theory Appl. 31 (1996), 121-129.
  5. L. Bernal-González and A. Montes-Rodríguez, Universal functions for composition operators, ibid. 27 (1995), 47-56.
  6. J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), 94-112.
  7. G. D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475.
  8. R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Benjamin/Cummings, Menlo Park, CA, 1986.
  9. P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
  10. R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288.
  11. G. Godefroy and J. H. Shapiro, Operators with dense invariant cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269.
  12. K.-G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987).
  13. K.-G. Grosse-Erdmann, On the universal functions of G. R. MacLane, Complex Variables Theory Appl. 15 (1990), 193-196.
  14. K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345-381.
  15. A. Gulisashvili and C. R. MacCluer, Linear chaos in the unforced quantum harmonic oscillator, J. Dynam. Systems Measurement Control 118 (1996), 337-338.
  16. D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829.
  17. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984.
  18. P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York, 1981.
  19. C. Kitai, Invariant closed sets for linear operators, thesis, Univ. of Toronto, Toronto, 1982.
  20. R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, preprint.
  21. F. León-Saavedra and A. Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), 524-545.
  22. F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Trans. Amer. Math. Soc., to appear.
  23. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin, 1977.
  24. G. R. MacLane, Sequences of derivatives and normal families, J. Anal. Math. 2 (1952/53), 72-87.
  25. F. Martínez-Giménez and A. Peris, Hypercyclic and chaotic backward shift operators on Köthe echelon spaces, preprint.
  26. V. Mathew, A note on hypercyclic operators on the space of entire sequences, Indian J. Pure Appl. Math. 25 (1994), 1181-1184.
  27. R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L2, Studia Math. 54 (1975), 149-159.
  28. A. Peris, Chaotic polynomials on Fréchet spaces, Proc. Amer. Math. Soc. 127 (1999), 3601-3603.
  29. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.
  30. S. Rolewicz, Metric Linear Spaces, second ed., D. Reidel, Dordrecht, 1985.
  31. H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), 765-770.
  32. H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993-1004.
  33. I. Singer, Bases in Banach Spaces. I, Springer, Berlin, 1970.
  34. I. Singer, Bases in Banach Spaces. II, Springer, Berlin, 1981.
  35. R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.
  36. A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984.
Pages:
47-68
Main language of publication
English
Received
1999-09-09
Accepted
2000-01-07
Published
2000
Exact and natural sciences