ArticleOriginal scientific text
Title
Metric entropy of convex hulls in Hilbert spaces
Authors 1, 2
Affiliations
- Department of Mathematics, University of Delaware Newark, DE 19711, U.S.A.
- Institut für Stochastik, FSU Jena Ernst-Abbe-Platz 1-4, 07743 Jena, Germany.
Abstract
Let T be a precompact subset of a Hilbert space. We estimate the metric entropy of co(T), the convex hull of T, by quantities originating in the theory of majorizing measures. In a similar way, estimates of the Gelfand width are provided. As an application we get upper bounds for the entropy of co(T), , , by functions of the 's only. This partially answers a question raised by K. Ball and A. Pajor (cf. [1]). Our estimates turn out to be optimal in the case of slowly decreasing sequences .
Keywords
metric entropy, convex hull, majorizing measure, Gaussian process
Bibliography
- K. Ball and A. Pajor, The entropy of convex bodies with "few" extreme points, in: London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 25-32.
- B. Bühler, W. V. Li and W. Linde, Localization of majorizing measures, in: Asymptotic Methods in Probability and Statistics with Applications, Birkhäuser, to appear.
- B. Carl, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal. 41 (1981), 290-306.
- B. Carl, Metric entropy of convex hulls in Hilbert spaces, Bull. London Math. Soc. 29 (1997), 452-458.
- B. Carl and D. E. Edmunds, Entropy of C(X)-valued operators and diverse applications, preprint, 1998.
- B. Carl, I. Kyrezi and A. Pajor, Metric entropy of convex hulls in Banach spaces, J. London Math. Soc., to appear.
- B. Carl and I. Stephani, Entropy, Compactness and Approximation of Operators, Cambridge Univ. Press, Cambridge, 1990.
- R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1 (1967), 290-330.
- R. M. Dudley, Universal Donsker classes and metric entropy, Ann. Probab. 15 (1987), 1306-1326.
- X. Fernique, Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens, Les Publications CRM, Montréal, 1997.
- A. Garnaev and E. Gluskin, On diameters of the Euclidean ball, Dokl. Akad. Nauk SSSR 277 (1984), 1048-1052 (in Russian).
- M. Ledoux, Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics, Lecture Notes in Math. 1648, Springer, 1996, 165-294.
- M. Ledoux and M. Talagrand, Probability in a Banach Space, Springer, 1991.
- G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, Cambridge, 1989.
- S C. Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), 121-128.
- I. Steinwart, Entropy of C(K)-valued operators, J. Approx. Theory, to appear.
- M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99-149.
- M. Talagrand, Majorizing measures: The generic chaining, Ann. Probab. 24 (1996), 1049-1103.