ArticleOriginal scientific text

Title

Metric entropy of convex hulls in Hilbert spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Delaware Newark, DE 19711, U.S.A.
  2. Institut für Stochastik, FSU Jena Ernst-Abbe-Platz 1-4, 07743 Jena, Germany.

Abstract

Let T be a precompact subset of a Hilbert space. We estimate the metric entropy of co(T), the convex hull of T, by quantities originating in the theory of majorizing measures. In a similar way, estimates of the Gelfand width are provided. As an application we get upper bounds for the entropy of co(T), T={t1,t2,...}, ||tj||aj, by functions of the aj's only. This partially answers a question raised by K. Ball and A. Pajor (cf. [1]). Our estimates turn out to be optimal in the case of slowly decreasing sequences (aj)j=1.

Keywords

metric entropy, convex hull, majorizing measure, Gaussian process

Bibliography

  1. K. Ball and A. Pajor, The entropy of convex bodies with "few" extreme points, in: London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 25-32.
  2. B. Bühler, W. V. Li and W. Linde, Localization of majorizing measures, in: Asymptotic Methods in Probability and Statistics with Applications, Birkhäuser, to appear.
  3. B. Carl, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal. 41 (1981), 290-306.
  4. B. Carl, Metric entropy of convex hulls in Hilbert spaces, Bull. London Math. Soc. 29 (1997), 452-458.
  5. B. Carl and D. E. Edmunds, Entropy of C(X)-valued operators and diverse applications, preprint, 1998.
  6. B. Carl, I. Kyrezi and A. Pajor, Metric entropy of convex hulls in Banach spaces, J. London Math. Soc., to appear.
  7. B. Carl and I. Stephani, Entropy, Compactness and Approximation of Operators, Cambridge Univ. Press, Cambridge, 1990.
  8. R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1 (1967), 290-330.
  9. R. M. Dudley, Universal Donsker classes and metric entropy, Ann. Probab. 15 (1987), 1306-1326.
  10. X. Fernique, Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens, Les Publications CRM, Montréal, 1997.
  11. A. Garnaev and E. Gluskin, On diameters of the Euclidean ball, Dokl. Akad. Nauk SSSR 277 (1984), 1048-1052 (in Russian).
  12. M. Ledoux, Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics, Lecture Notes in Math. 1648, Springer, 1996, 165-294.
  13. M. Ledoux and M. Talagrand, Probability in a Banach Space, Springer, 1991.
  14. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, Cambridge, 1989.
  15. S C. Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), 121-128.
  16. I. Steinwart, Entropy of C(K)-valued operators, J. Approx. Theory, to appear.
  17. M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99-149.
  18. M. Talagrand, Majorizing measures: The generic chaining, Ann. Probab. 24 (1996), 1049-1103.
Pages:
29-45
Main language of publication
English
Received
1998-10-10
Published
2000
Exact and natural sciences