ArticleOriginal scientific text

Title

On pointwise estimates for maximal and singular integral operators

Authors 1

Affiliations

  1. Odessa

Abstract

We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, Lp_ω and BLO-norm inequalities

Bibliography

  1. R. J. Bagby and D. S. Kurtz, Covering lemmas and the sharp function, Proc. Amer. Math. Soc. 93 (1985), 291-296.
  2. R. J. Bagby and D. S. Kurtz, A rearranged good λ inequality, Trans. Amer. Math. Soc. 293 (1986), 71-81.
  3. C. Bennett, Another characterization of BLO, Proc. Amer. Math. Soc. 85 (1982), 552-556.
  4. C. Bennett, R. DeVore and R. Sharpley, Weak-L and BMO, Ann. of Math. 113 (1981), 601-611.
  5. C. Bennett and R. Sharpley, Weak-type inequalities for Hp and BMO, in: Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 201-229.
  6. K. M. Chong and N. M. Rice, Equimeasurable Rearrangements of Functions, Queen's Papers in Pure and Appl. Math. 28, Queen's University, Kingston, Ont., 1971.
  7. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 15 (1974), 241-250.
  8. R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249-254.
  9. A. Córdoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101.
  10. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.
  11. B. Jawerth and A. Torchinsky, Local sharp maximal functions, J. Approx. Theory 43 (1985), 231-270.
  12. F. John, Quasi-isometric mappings, in: Seminari 1962-1963 di Analisi, Algebra, Geometria e Topologia (Roma, 1964), Ediz. Cremonese, Roma, 1965, 462-473.
  13. M. A. Leckband, Structure results on the maximal Hilbert transform and two-weight norm inequalities, Indiana Univ. Math. J. 34 (1985), 259-275.
  14. A. K. Lerner, On weighted estimates of non-increasing rearrangements, East J. Approx. 4 (1998), 277-290.
  15. S. Spanne, Sur l'interpolation entre les espaces LkpΦ, Ann. Scuola Norm. Sup. Pisa 20 (1966), 625-648.
  16. E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 316-335.
  17. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  18. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
  19. J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544.
Pages:
285-291
Main language of publication
English
Received
1999-09-01
Published
2000
Exact and natural sciences