ArticleOriginal scientific text
Title
An example of a Fréchet algebra which is a principal ideal domain
Authors 1, 1
Affiliations
- Departamento de Matemática, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1 - Ciudad Universitaria, 1428 Buenos Aires, Argentina
Abstract
We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.
Keywords
Fréchet algebra, principal ideal domain, quasi-analytic class
Bibliography
- R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182.
- R. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 623-630.
- H. Arizmendi, On the spectral radius of a matrix algebra, Funct. Approx. Comment. Math. 19 (1990), 167-176.
- S. Bouloussa, Caractérisation des algèbres de Fréchet qui sont des anneaux de valuation, J. London Math. Soc. (2) 25 (1982), 355-364.
- H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183.
- A. Ferreira and G. Tomassini, Finiteness properties of topological algebras, Ann. Scuola Norm. Sup. Pisa 3 (1978), 471-488.
- Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.
- H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383.
- W. Roberts and D. Vanberg, Convex Functions, Academic Press, New York, 1973.
- W. Rudin, Real and Complex Analysis, McGraw-Hill, 1964.
- A. Sinclair and A. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211 (1974), 151-153.
- G. Tomassini, On some finiteness properties of topological algebras, Symposia Math. 11 (1973), 305-311.
- W. Żelazko, A theorem on
division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373-375. - A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1977.