ArticleOriginal scientific text

Title

Universal images of universal elements

Authors 1

Affiliations

  1. Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, Sevilla 41080, Spain.

Abstract

We furnish several necessary and sufficient conditions for the following property: For a topological space X, a continuous selfmapping S of X and a family τ of continuous selfmappings of X, the image under S of every τ-universal element is also τ-universal. An application in operator theory, where we extend results of Bourdon, Herrero, Bes, Herzog and Lemmert, is given. In particular, it is proved that every hypercyclic operator on a real or complex Banach space has a dense invariant linear manifold with maximal algebraic dimension consisting, apart from zero, of vectors which are hypercyclic.

Keywords

universal element, almost commutativity, universal image, dense range, dense hypercyclic manifold, point spectrum of the adjoint, analytic function of an operator, real entire function, maximal dimension

Bibliography

  1. [An] S. I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), 384-390.
  2. [Be] L. Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999), 1003-1010.
  3. [Bs] J. Bes, Invariant manifolds of hypercyclic vectors for the real scalar case, ibid., 1801-1804.
  4. [BP] J. Bonet and A. Peris, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159 (1998), 587-596.
  5. [Bo] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), 845-847.
  6. [Do] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.
  7. [GS] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269.
  8. [Gr] K. G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987).
  9. [He] D. A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), 179-190.
  10. [HL] G. Herzog und R. Lemmert, Über Endomorphismen mit dichten Bahnen, Math. Z. 213 (1993), 473-477.
  11. [HS] G. Herzog and C. Schmoeger, On operators T such that ⨍(T) is hypercyclic, Studia Math. 108 (1994), 209-216.
  12. [Ki] C. Kitai, Invariant closed sets for linear operators, Dissertation, University of Toronto, 1982.
  13. [Re] C. J. Read, The invariant subspace problem for a class of Banach spaces, 2: hypercyclic operators, Israel J. Math. 63 (1988), 1-40.
  14. [Ro] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.
  15. [Ru] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991.
  16. [Sc] C. Schmoeger, On the norm-closure of the class of hypercyclic operators, Ann. Polon. Math. 65 (1997), 157-161.
Pages:
241-250
Main language of publication
English
Received
1998-09-18
Accepted
1999-01-22
Published
2000
Exact and natural sciences