ArticleOriginal scientific text

Title

Interpolation on families of characteristic functions

Authors 1, 2

Affiliations

  1. Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel
  2. Department of Mathematics, Ohio University, Athens, Ohio 45701, U.S.A.

Abstract

We study a problem of interpolating a linear operator which is bounded on some family of characteristic functions. A new example is given of a Banach couple of function spaces for which such interpolation is possible. This couple is of the form Φ¯=(B,L) where B is an arbitrary Banach lattice of measurable functions on a σ-finite nonatomic measure space (Ω,Σ,μ). We also give an equivalent expression for the norm of a function ⨍ in the real interpolation space (B,L)θ,p in terms of the characteristic functions of the level sets of ⨍.

Bibliography

  1. [B] B. Beauzamy, Espaces d'interpolation réels: topologie et géométrie, Lecture Notes in Math. 666, Springer, Berlin, 1978.
  2. [BL] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976.
  3. [CJM] M. Cwikel, B. Jawerth, and M. Milman, The couple (B,L) and commutator estimates, unpublished manuscript.
  4. [CP] M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50.
  5. [DU] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
  6. [DS] N. Dunford and J. T. Schwartz, Linear Operators, Vol. 1, Interscience, New York, 1958.
  7. [E] G. A. Edgar, Measurability in Banach spaces II, Indiana Univ. Math. J. 28 (1979), 559-579.
  8. [F] K. Floret, Weakly Compact Sets, Lecture Notes in Math. 801, Springer, Berlin, 1980.
  9. [G1] A. Gulisashvili, An interpolation theorem of weak type and the behavior of the Fourier transform of a function having prescribed Lebesgue sets, Dokl. Akad. Nauk SSSR 218 (1974), 1268-1271 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974), 1481-1485.
  10. [G2] A. Gulisashvili, The interpolation theorem on subsets, Bull. Georgian Acad. Sci. 88 (1977), 545-548.
  11. [G3] A. Gulisashvili, The individual interpolation theorem, ibid. 94 (1979), 33-36.
  12. [G4] A. Gulisashvili, Estimates for the Pettis integral in interpolation spaces and some inverse embedding theorems, Dokl. Akad. Nauk SSSR 263 (1982), 793-798 (in Russian); English transl.: Soviet Math. Dokl. 25 (1982), 428-432.
  13. [G5] A. Gulisashvili, Estimates for the Pettis integral in interpolation spaces with some applications, in: Banach Space Theory and its Applications ( Bucharest, 1981), Lecture Notes in Math. 991, Springer, Berlin, 1983, 55-76.
  14. [G6] A. Gulisashvili, Rearrangements of functions on a locally compact abelian group and integrability of the Fourier transform, J. Funct. Anal. 146 (1997), 62-115.
  15. [KPS] S. G. Krein, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monogr. 54, Amer. Math. Soc., Providence, RI, 1982.
  16. [P] J. D. Pryce, A device of R. J. Whitley's applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. 23 (1971), 532-546.
  17. [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.
  18. [T] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438.
Pages:
209-224
Main language of publication
English
Received
1998-08-19
Published
1999-11-30
Exact and natural sciences