ArticleOriginal scientific text
Title
Topological classification of strong duals to nuclear (LF)-spaces
Authors 1
Affiliations
- Department of Mathematics, Lviv University, Universytetska 1, Lviv, 79000, Ukraine
Abstract
We show that the strong dual X' to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: , , , , or , where and . In particular, the Schwartz space D' of distributions is homeomorphic to . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either to or to .
Keywords
dual space, nuclear (LF)-space, Montel space, direct limit, Hilbert cube
Bibliography
- [An] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-389.
- [Ba] T. Banakh, On linear topological spaces (linearly) homeomorphic to
, Mat. Stud. 9 (1998), 99-101. - [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975.
- [Ch] T. A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Regional Conf. Ser. in Math. 28, Amer. Math. Soc., 1976.
- [Di] J. Dieudonné, Sur les espaces de Montel métrisables, C. R. Acad. Sci. Paris 238 (1954), 194-195.
- [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [Ke] O. M. Keller, Die homoimorphie der kompakten konvexen Mengen in Hilbertschen Raum, Math. Ann. 105 (1931), 748-758.
- [Ma] P. Mankiewicz, On topological, Lipschitz, and uniform classification of LF-spaces, Studia Math. 52 (1974), 109-142.
- [Sa] K. Sakai, On
-manifolds and -manifolds, Topology Appl. 18 (1984), 69-79. - [Sch] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.