ArticleOriginal scientific text

Title

Topological classification of strong duals to nuclear (LF)-spaces

Authors 1

Affiliations

  1. Department of Mathematics, Lviv University, Universytetska 1, Lviv, 79000, Ukraine

Abstract

We show that the strong dual X' to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: ω, , Q×, ω×, or ()ω, where =limn and Q=[-1,1]ω. In particular, the Schwartz space D' of distributions is homeomorphic to ()ω. As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to Q×. In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either to or to Q×.

Keywords

dual space, nuclear (LF)-space, Montel space, direct limit, Hilbert cube

Bibliography

  1. [An] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-389.
  2. [Ba] T. Banakh, On linear topological spaces (linearly) homeomorphic to , Mat. Stud. 9 (1998), 99-101.
  3. [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975.
  4. [Ch] T. A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Regional Conf. Ser. in Math. 28, Amer. Math. Soc., 1976.
  5. [Di] J. Dieudonné, Sur les espaces de Montel métrisables, C. R. Acad. Sci. Paris 238 (1954), 194-195.
  6. [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
  7. [Ke] O. M. Keller, Die homoimorphie der kompakten konvexen Mengen in Hilbertschen Raum, Math. Ann. 105 (1931), 748-758.
  8. [Ma] P. Mankiewicz, On topological, Lipschitz, and uniform classification of LF-spaces, Studia Math. 52 (1974), 109-142.
  9. [Sa] K. Sakai, On -manifolds and Q-manifolds, Topology Appl. 18 (1984), 69-79.
  10. [Sch] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.
Pages:
201-208
Main language of publication
English
Received
1998-06-15
Published
2000
Exact and natural sciences