ArticleOriginal scientific text

Title

The continuity of Lie homomorphisms

Authors 1, 2

Affiliations

  1. Département de Mathématiques et de Statistique, Université Laval, Québec, Québec, G1K 7P4, Canada
  2. Department of Pure Mathematics, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland

Abstract

We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.

Keywords

Lie homomorphisms, Banach algebras, spectrally bounded maps

Bibliography

  1. B. Aupetit, The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras, J. Funct. Anal. 47 (1982), 1-6.
  2. B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
  3. K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, New York, 1996.
  4. M. I. Berenguer and A. R. Villena, Continuity of Lie isomorphisms of Banach algebras, Bull. London Math. Soc. 31 (1999), 6-10.
  5. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
  6. M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162.
  7. M. Brešar and M. Mathieu, Derivations mapping into the radical, III, J. Funct. Anal. 133 (1995), 21-29.
  8. M. Brešar and P. Šemrl, Spectral characterization of central elements in Banach algebras, Studia Math. 120 (1996), 47-52.
  9. R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434.
  10. H. G. Dales, On norms of algebras, in: Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Canberra, 1989, 61-96.
  11. M. Mathieu, Where to find the image of a derivation, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 237-249.
  12. M. Mathieu, Lie mappings of C*-algebras, in: Nonassociative Algebra and Its Applications, R. Costa et al. (eds.), Marcel Dekker, New York, in press.
  13. V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362.
  14. A. Rodríguez Palacios, The uniqueness of the complete norm topology in complete normed nonassociative algebras, J. Funct. Anal. 60 (1985), 1-15.
  15. P. Šemrl, Spectrally bounded linear maps on B(H), Quart. J. Math. Oxford (2) 49 (1998), 87-92.
Pages:
193-199
Main language of publication
English
Received
1999-06-21
Accepted
1999-10-19
Published
2000
Exact and natural sciences