ArticleOriginal scientific text

Title

Schauder decompositions and multiplier theorems

Authors 1, 2, 3, 2

Affiliations

  1. Department of Mathematics, Faculty ITS, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.
  2. Department of Mathematics, Faculty ITS, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
  3. Department of Mathematics and Statistics, The Flinders University of South Australia, G.P.O. Box 2100 Adelaide, South Australia 5001, Australia

Abstract

We study the interplay between unconditional decompositions and the R-boundedness of collections of operators. In particular, we get several multiplier results of Marcinkiewicz type for Lp-spaces of functions with values in a Banach space X. Furthermore, we show connections between the above-mentioned properties and geometric properties of the Banach space X.

Bibliography

  1. [BG94] E. Berkson and T. A. Gillespie, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math. 112 (1994), 13-49.
  2. [Bou83] J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168.
  3. [Bou85] J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, in: Probability Theory and Harmonic Analysis, Dekker, New York, 1985, 1-19.
  4. [Bur83] D. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981), Wadsworth, Belmont, 1983, 270-286.
  5. [DJT95] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995.
  6. [DU77] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
  7. [DS97] P. Dodds and F. Sukochev, Non-commutative bounded Vilenkin systems, preprint, 1997.
  8. [EG77] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Grenzgeb. 90, Springer, Berlin, 1977.
  9. [GK70] I. C. Gohberg and M. G. Kreĭn, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr. 24, Amer. Math. Soc., Providence, RI, 1970.
  10. [KP79] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30.
  11. [KP70] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68.
  12. [LT77] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
  13. [Mar39] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91.
  14. [Mau75] B. Maurey, Système de Haar, in: Séminaire Maurey-Schwartz 1974-1975: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II, Centre Math., École Polytech., Paris, 1975, p. 26.
  15. [Pal32] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
  16. [Pis78] G. Pisier, Some results on Banach spaces without local unconditional structure, Composito Math. 37 (1978), 3-19.
  17. [SWS90] F. Schipp, W. R. Wade and P. Simon, Walsh Series, Adam Hilger, Bristol, 1990.
  18. [Ste70] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, NJ, 1970.
  19. [SF94] A. Sukochev and S. V. Ferleger, Harmonic analysis in symmetric spaces of measurable operators, Dokl. Akad. Nauk 339 (1994), 307-310 (in Russian); English transl.: Russian. Acad. Sci. Dokl. Math. 50 (1995), 432-437.
  20. [SF95] F. A. Sukochev and S. V. Ferleger, Harmonic analysis in (UMD)-spaces: Applications to the theory of bases, Mat. Zametki 58 (1995), 890-905 (in Russian); English transl.: Math. Notes 58 (1995), 1315-1326.
  21. [Sun51] G. I. Sunouchi, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc. 2 (1951), 5-11.
  22. [Wat58] C. Watari, On generalized Walsh Fourier series, Tôhoku Math. J. (2) 10 (1958), 211-241.
  23. [Wen93] J. Wenzel, Mean convergence of vector-valued Walsh series, Math. Nachr. 162 (1993), 117-124.
Pages:
135-163
Main language of publication
English
Received
1998-10-27
Published
1999-11-22
Exact and natural sciences