Conditions for the existence of measurable and integrable solutions of the cohomology equation on a measure space are deduced. They follow from the study of the ergodic structure corresponding to some families of bidimensional linear difference equations. Results valid for the non-measure-preserving case are also obtained
Departamento de Matemática Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Spain
Bibliografia
[1] A. I. Alonso and R. Obaya, Dynamical description of bidimensional linear systems with a measurable 2-sheet, J. Math. Anal. Appl.212, 154-175 (1997).
[2] I. Assani, Note on the equation y = (I-T)x, preprint, 1997.
[3] I. Assani and J. Woś, An equivalent measure for some nonsingular transformations and application, Studia Math. 97, 1-12 (1990).
[4] R. C. Bradley, On a theorem of K. Schmidt, Statist. Probab. Lett. 24, 9-12 (1995).
[5] F. E. Browder, On the iteration of transformations in non-compact minimal dynamical systems, Proc. Amer. Math. Soc. 9, 773-780 (1958).
[6] H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83, 573-601 (1961).
[7] W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36, Providence, RI, 1955.
[8] U. Krengel and M. Lin, On the range of the generator of a markovian semigroup, Math. Z. 185, 553-565 (1984).
[9] V. P. Leonov, On the dispersion of the time averages of a stationary stochastic process, Teor. Veroyatnost. i Primenen. 6 (1961), 93-101 (in Russian); English transl. in Theory Probab. Appl. 6 (1961).
[10] M. Lin and R. Sine, Ergodic theory and the functional equation (I-T)x= y , J. Operator Theory 10, 153-166 (1983).
[11] F. J. Martín-Reyes and A. de la Torre, On the pointwise ergodic theorem, Studia Math. 108, 1-4 (1994).
[12] S. Novo and R. Obaya, An ergodic classification of bidimensional linear systems, J. Dynam. Differential Equations 8, 373-406 (1996).
[13] S. Novo and R. Obaya, An ergodic and topological approach to almost periodic bidimensional linear systems, in: Contemp. Math. 215, Amer. Math. Soc., 1998, 299-323.
[14] R. Sato, Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations, Studia Math. 114, 227-236 (1995).