ArticleOriginal scientific textAbsolutely continuous dynamics and real coboundary cocycles in
Title
Absolutely continuous dynamics and real coboundary cocycles in -spaces, 0 < p < ∞
Authors 1, 2, 1
Affiliations
- Departamento de Matemática Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Spain
- Institute of Computational Mathematics and Scientific, Engineering Computing, Chinese Academy of Sciences, Beijing 100080, P.R. China
Abstract
Conditions for the existence of measurable and integrable solutions of the cohomology equation on a measure space are deduced. They follow from the study of the ergodic structure corresponding to some families of bidimensional linear difference equations. Results valid for the non-measure-preserving case are also obtained
Bibliography
- A. I. Alonso and R. Obaya, Dynamical description of bidimensional linear systems with a measurable 2-sheet, J. Math. Anal. Appl.212, 154-175 (1997).
- I. Assani, Note on the equation y = (I-T)x, preprint, 1997.
- I. Assani and J. Woś, An equivalent measure for some nonsingular transformations and application, Studia Math. 97, 1-12 (1990).
- R. C. Bradley, On a theorem of K. Schmidt, Statist. Probab. Lett. 24, 9-12 (1995).
- F. E. Browder, On the iteration of transformations in non-compact minimal dynamical systems, Proc. Amer. Math. Soc. 9, 773-780 (1958).
- H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83, 573-601 (1961).
- W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36, Providence, RI, 1955.
- U. Krengel and M. Lin, On the range of the generator of a markovian semigroup, Math. Z. 185, 553-565 (1984).
- V. P. Leonov, On the dispersion of the time averages of a stationary stochastic process, Teor. Veroyatnost. i Primenen. 6 (1961), 93-101 (in Russian); English transl. in Theory Probab. Appl. 6 (1961).
- M. Lin and R. Sine, Ergodic theory and the functional equation (I-T)x= y , J. Operator Theory 10, 153-166 (1983).
- F. J. Martín-Reyes and A. de la Torre, On the pointwise ergodic theorem, Studia Math. 108, 1-4 (1994).
- S. Novo and R. Obaya, An ergodic classification of bidimensional linear systems, J. Dynam. Differential Equations 8, 373-406 (1996).
- S. Novo and R. Obaya, An ergodic and topological approach to almost periodic bidimensional linear systems, in: Contemp. Math. 215, Amer. Math. Soc., 1998, 299-323.
- R. Sato, Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations, Studia Math. 114, 227-236 (1995).