ArticleOriginal scientific text
Title
Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials
Authors 1, 2
Affiliations
- Kazuhiro Kurata, Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo, 192-03 Japan
- Satoko Sugano Department of Mathematics Gakushuin University Mejiro 1-5-1, Toshima-ku Tokyo, 171, Japan
Abstract
We show a weighted version of Fefferman-Phong's inequality and apply it to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential decay of eigenfunctions for certain degenerate elliptic operators of second order with positive potentials.
Bibliography
- [CSW] S. Chanillo, J. Strömberg and R. Wheeden, Norm inequalities for potential type operators, Rev. Mat. Iberoamericana 3 (1987), 311-335.
- [CW] S. Chanillo and R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa 15 (1988), 309-340.
- [CFG] F. Chiarenza, E. Fabes and N. Garofalo, Harnack's inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), 415-425.
- [CF] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. 7 (1987), 273-279.
- [CoF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
- [Da] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989.
- [FJK] E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, 151-182.
- [FKS] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.
- [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
- [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
- [Ge] F. Gehring, The
-integrability of the partial derivatives of a quasi-conformal mapping, Acta Math. 130 (1973), 265-277. - [Gu] C. Gutiérrez, Harnack's inequality for degenerate Schrödinger operators, Trans. Amer. Math. Soc. 312 (1989), 403-419.
- [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
- [Ku1] K. Kurata, Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order, Indiana Univ. Math. J. 43 (1994), 411-440.
- [Ku2] K. Kurata, On doubling properties for non-negative weak solutions of elliptic and parabolic PDE, Israel J. Math., to appear.
- [KS] K. Kurata and S. Sugano, A remark on estimates for uniformly elliptic operators on weighted
spaces and Morrey spacs, Math. Nachr., to appear. - [Mu] M. Murata, On construction of Martin boundaries for second order elliptic equations, Publ. Res. Inst. Math. Sci. 26 (1990), 585-627.
- [Sh1] Z. Shen,
estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. - [Sh2] Z. Shen, Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields, Trans. Amer. Math. Soc. 348 (1996), 4465-4488.
- [Sm] H. F. Smith, Parametrix construction for a class of subelliptic differential operators, Duke Math. J. 63 (1991), 343-354.
- [SW] J. O. Strömberg and R. L. Wheeden, Fractional integrals on weighted
and spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321. - [Su] S. Sugano, Estimates for the operators
and with certain nonnegative potentials V, Tokyo J. Math. 21 (1998), 441-452. - [Ta] K. Tachizawa, Asymptotic distribution of eigenvalues of Schrödinger operators with nonclassical potentials, Tôhoku Math. J. 42 (1990), 381-406.
- [Zh] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.