Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2000 | 138 | 1 | 93-100

Tytuł artykułu

Applying the density theorem for derivations to range inclusion problems

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The problem of when derivations (and their powers) have the range in the Jacobson radical is considered. The proofs are based on the density theorem for derivations.

Słowa kluczowe

Twórcy

autor
  • Department of Mathematics, National Cheng-Kung University, Tainan, Taiwan.
  • Department of Mathematics, University of Maribor, Maribor, Slovenia

Bibliografia

  • [1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
  • [2] K. I. Beidar and M. Brešar, Extended Jacobson density theorem for rings with derivations and automorphisms, submitted.
  • [3] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, 1996.
  • [4] M. Brešar, Derivations on noncommutative Banach algebras II, Arch. Math. (Basel) 61 (1994), 56-59.
  • [5] M. Brešar, Derivations mapping into the socle, II, Proc. Amer. Math. Soc. 126 (1998), 181-188.
  • [6] M. Brešar and P. Šemrl, On locally linearly dependent operators and derivations, Trans. Amer. Math. Soc. 351 (1999), 1257-1275.
  • [7] L. O. Chung and J. Luh, Nilpotency of derivations, Canad. Math. Bull. 26 (1983), 341-346.
  • [8] B. Felzenszwalb and C. Lanski, On the centralizers of ideals and nil derivations, J. Algebra 83 (1983), 520-530.
  • [9] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), 369-370.
  • [10] I. N. Herstein, Sui commutatori degli anelli semplici, Rend. Sem. Mat. Fis. Milano 33 (1963), 80-86.
  • [11] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155-168.
  • [12] C. Lanski, Derivations nilpotent on subsets of prime rings, Comm. Algebra 20 (1992), 1427-1446.
  • [13] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 731-734.
  • [14] C. Le Page, Sur quelques conditions entraȋnant la commutativité dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 265 (1967), 235-237.
  • [15] W. S. Martindale III and C. R. Miers, On the iterates of derivations of prime rings, Pacific J. Math. 104 (1983), 179-190.
  • [16] M. Mathieu, Where to find the image of a derivation, in: Banach Center Publ. 30, Inst. Math. Polish Acad. Sci., Warszawa, 1994, 237-249.
  • [17] M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), 469-474.
  • [18] M. Mathieu and V. Runde, Derivations mapping into the radical, II, Bull. London Math. Soc. 24 (1992), 485-487.
  • [19] G. J. Murphy, Aspects of the theory of derivations, in: Banach Center Publ. 30 1994, 267-275.
  • [20] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211.
  • [21] V. Runde, Range inclusion results for derivations on noncommutative Banach algebras, Studia Math. 105 (1993), 159-172.
  • [22] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170.
  • [23] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
  • [24] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460.
  • [25] Yu. V. Turovskiĭ and V. S. Shul'man, Conditions for the massiveness of the range of a derivation of a Banach algebra and of associated differential operators, Mat. Zametki 42 (1987), 305-314 (in Russian).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-smv138i1p93bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.