ArticleOriginal scientific text
Title
On operator ideals related to (p,σ)-absolutely continuous operators
Authors 1, 1
Affiliations
- E.T.S. Ingenieros Agrónomos, Camino de Vera, 46072 Valencia, Spain
Abstract
We study tensor norms and operator ideals related to the ideal , 1 < p < ∞, 0 < σ < 1, of (p,σ)-absolutely continuous operators of Matter. If α is the tensor norm associated with (in the sense of Defant and Floret), we characterize the -nuclear and - integral operators by factorizations by means of the composition of the inclusion map with a diagonal operator , where r is the conjugate exponent of p'/(1-σ). As an application we study the reflexivity of the components of the ideal .
Keywords
tensor norms, operator ideals, (p,σ)-absolutely continuous operators, -nuclear and integral operators
Bibliography
- Aliprantis C. D. and Burkinshaw, O., Positive Operators, Academic Press, New York, 1985.
- Beauzamy, B., Espaces d'Interpolation Réels: Topologie et Géométrie, Lecture Notes in Math. 666, Springer, Berlin, 1978.
- Defant, A. and Floret, K., Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, Amsterdam, 1993.
- Gilbert, J. E. and Leih, T. J., Factorization, tensor products and bilinear forms in Banach space theory, in: Notes in Banach Spaces, Univ. of Texas Press, Austin, 1980, 182-305.
- Köthe, G., Topological Vector Spaces II, Springer, New York, 1979.
- López Molina, J. A. and Sánchez Pérez, E. A., Ideales de operadores absolutamente continuos, Rev. Real Acad. Cienc. Madrid 87 (1993), 349-378.
- López Molina, J. A. and Sánchez Pérez, E. A., On ultraproducts of compositions of certain operators between some finite dimensional
-spaces, preprint, 1999. - Matter, U., Absolutely continuous operators and super-reflexivity, Math. Nachr. 130 (1987), 193-216.
- Matter, Factoring through interpolation spaces and super-reflexive Banach spaces, Rev. Roumaine Math. Pures Appl. 34 (1989), 147-156.
- Niculescu, C. P., Absolute continuity in Banach space theory, ibid. 24 (1979), 413-422.
- Pietsch, A., Operator Ideals, North-Holland, Amsterdam, 1980.
- Saphar, P., Produits tensoriels d'espaces de Banach et classes d'applications linéaires, Studia Math. 38 (1970), 71-100.