ArticleOriginal scientific text

Title

Weighted spaces of holomorphic functions on Banach spaces

Authors 1, 1, 1

Affiliations

  1. Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain.

Abstract

We deal with weighted spaces HV0(U) and HV(U) of holomorphic functions defined on a balanced open subset U of a Banach space X. We give conditions on the weights to ensure that the weighted spaces of m-homogeneous polynomials constitute a Schauder decomposition for them. As an application, we study their reflexivity. We also study the existence of a predual. Several examples are provided.

Bibliography

  1. R. Alencar, On reflexivity and basis for P(^mE), Proc. Roy. Irish Acad. 85A (1985), 131-138.
  2. R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411.
  3. J. M. Ansemil and S. Ponte, An example of quasinormable Fréchet function space which is not a Schwartz space, in: Functional Analysis, Holomorphy and Approximation theory, S. Machado (ed.), Lecture Notes in Math. 843, Springer, 1981, 1-8.
  4. R. Aron, B. Cole and T. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93.
  5. R. Aron, P. Galindo, D. García and M. Maestre, Regularity and algebras of analytic functions in infinite dimensions, Trans. Amer. Math. Soc. 348 (1996), 543-559.
  6. K. D. Bierstedt and J. Bonet, Biduality in Fréchet and (LB)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 113-133.
  7. K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271-297.
  8. K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 137-168.
  9. K. D. Bierstedt, R. G. Meise and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160.
  10. K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79.
  11. O. Blasco and A. Galbis, On Taylor coefficients of entire functions integrable against exponential weights, preprint, Univ. of Valencia, 1998.
  12. J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, Berlin, 1984.
  13. S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981.
  14. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., London, 1999.
  15. S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat. 13 (1993), 155-195.
  16. P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type on (DF)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 135-148.
  17. P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type, J. Math. Anal. Appl. 166 (1992), 236-246.
  18. P. Galindo, M. Maestre and P. Rueda, Biduality in spaces of holomorphic functions, Math. Scand., to appear.
  19. A. Grothendieck, Sur les espaces (F) et(DF), Summa Brasil. Math. 3 (1954), no. 6, 57-122.
  20. N. J. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc. 68 (1970), 377-392.
  21. G. Köthe, Topological Vector Spaces I, Grundlehren Math. Wiss. 159, Springer, New York, 1969.
  22. W. Lusky, On the Fourier series of unbounded harmonic functions, preprint, Univ. Paderborn, 1998.
  23. M. Matos, On holomorphy in Banach spaces and absolute convergence of Fourier series, Portugal. Math. 45 (1988), 429-450.
  24. J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (1991), 867-887.
  25. J. Mujica, Linearization of holomorphic mappings of bounded type, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 149-162.
  26. G. Pólya and G. Szegő, Problems and Theorems in Analysis I, 4th ed., Springer, New York, 1970.
  27. A. Prieto, The bidual of spaces of holomorphic functions in infinitely many variables, Proc. Roy. Irish Acad. 92A (1992), 1-8.
  28. L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280.
  29. P. Rueda, On the Banach-Dieudonné theorem for spaces of holomorphic functions, Quaestiones Math. 19 (1996), 341-352.
  30. R. Ryan, Application of topological tensor products to infinite dimensional holomorphy, Ph.D. thesis, Trinity College, Dublin, 1980.
  31. R. Ryan, Holomorphic mappings on 1, Trans. Amer. Math. Soc. 302 (1987), 797-811.
  32. K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981.
  33. W. H. Summer, Dual spaces of weighted spaces, Trans. Amer. Math. Soc. 151 (1970), 323-333.
  34. D. L. Williams, Some Banach spaces of entire functions, Ph.D. thesis, Univ. of Michigan, 1967.
Pages:
1-24
Main language of publication
English
Received
1998-01-25
Accepted
1999-02-18
Published
2000
Exact and natural sciences