ArticleOriginal scientific text
Title
Weighted spaces of holomorphic functions on Banach spaces
Authors 1, 1, 1
Affiliations
- Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain.
Abstract
We deal with weighted spaces and HV(U) of holomorphic functions defined on a balanced open subset U of a Banach space X. We give conditions on the weights to ensure that the weighted spaces of m-homogeneous polynomials constitute a Schauder decomposition for them. As an application, we study their reflexivity. We also study the existence of a predual. Several examples are provided.
Bibliography
- R. Alencar, On reflexivity and basis for
, Proc. Roy. Irish Acad. 85A (1985), 131-138. - R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411.
- J. M. Ansemil and S. Ponte, An example of quasinormable Fréchet function space which is not a Schwartz space, in: Functional Analysis, Holomorphy and Approximation theory, S. Machado (ed.), Lecture Notes in Math. 843, Springer, 1981, 1-8.
- R. Aron, B. Cole and T. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93.
- R. Aron, P. Galindo, D. García and M. Maestre, Regularity and algebras of analytic functions in infinite dimensions, Trans. Amer. Math. Soc. 348 (1996), 543-559.
- K. D. Bierstedt and J. Bonet, Biduality in Fréchet and (LB)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 113-133.
- K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271-297.
- K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 137-168.
- K. D. Bierstedt, R. G. Meise and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160.
- K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79.
- O. Blasco and A. Galbis, On Taylor coefficients of entire functions integrable against exponential weights, preprint, Univ. of Valencia, 1998.
- J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, Berlin, 1984.
- S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981.
- S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., London, 1999.
- S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat. 13 (1993), 155-195.
- P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type on (DF)-spaces, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 135-148.
- P. Galindo, D. García and M. Maestre, Holomorphic mappings of bounded type, J. Math. Anal. Appl. 166 (1992), 236-246.
- P. Galindo, M. Maestre and P. Rueda, Biduality in spaces of holomorphic functions, Math. Scand., to appear.
- A. Grothendieck, Sur les espaces (F) et(DF), Summa Brasil. Math. 3 (1954), no. 6, 57-122.
- N. J. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc. 68 (1970), 377-392.
- G. Köthe, Topological Vector Spaces I, Grundlehren Math. Wiss. 159, Springer, New York, 1969.
- W. Lusky, On the Fourier series of unbounded harmonic functions, preprint, Univ. Paderborn, 1998.
- M. Matos, On holomorphy in Banach spaces and absolute convergence of Fourier series, Portugal. Math. 45 (1988), 429-450.
- J. Mujica, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (1991), 867-887.
- J. Mujica, Linearization of holomorphic mappings of bounded type, in: Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 170, North-Holland, Amsterdam, 1992, 149-162.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I, 4th ed., Springer, New York, 1970.
- A. Prieto, The bidual of spaces of holomorphic functions in infinitely many variables, Proc. Roy. Irish Acad. 92A (1992), 1-8.
- L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280.
- P. Rueda, On the Banach-Dieudonné theorem for spaces of holomorphic functions, Quaestiones Math. 19 (1996), 341-352.
- R. Ryan, Application of topological tensor products to infinite dimensional holomorphy, Ph.D. thesis, Trinity College, Dublin, 1980.
- R. Ryan, Holomorphic mappings on
, Trans. Amer. Math. Soc. 302 (1987), 797-811. - K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981.
- W. H. Summer, Dual spaces of weighted spaces, Trans. Amer. Math. Soc. 151 (1970), 323-333.
- D. L. Williams, Some Banach spaces of entire functions, Ph.D. thesis, Univ. of Michigan, 1967.