ArticleOriginal scientific text

Title

Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process

Authors 1, 2

Affiliations

  1. Department of Pure Mathematics, The University of Hull, Hull HU6 7RX, United Kingdom
  2. Institute of Mathematics, Polish Academy of Sciences, Św. Tomasza 30/7, 31-027 Kraków, Poland

Abstract

Stochastic partial differential equations on d are considered. The noise is supposed to be a spatially homogeneous Wiener process. Using the theory of stochastic integration in Banach spaces we show the existence of a Markovian solution in a certain weighted Lq-space. Then we obtain the existence of a space continuous solution by means of the Da Prato, Kwapień and Zabczyk factorization identity for stochastic convolutions.

Keywords

stochastic partial differential equations in Lq-spaces, homogeneous Wiener process, random environment, stochastic integration in Banach spaces

Bibliography

  1. V. Bally, I. Gyöngy and E. Pardoux, White noise driven parabolic SPDE'S with measurable drift, J. Funct. Anal. 120 (1994), 484-510.
  2. P. Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98 (1976), 891-952.
  3. B. Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland, Amsterdam, 1985.
  4. Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal. 4 (1995), 1-45.
  5. Z. Brzeźniak, On stochastic convolutions in Banach spaces and applications, Stochastics Stochastics Rep. 61 (1997), 245-295.
  6. Z. Brzeźniak and D. Gątarek, Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces, Stochastic Process. Appl., to appear.
  7. Z. Brzeźniak and S. Peszat, Stochastic two dimensional Euler equations, Preprint 2, School of Mathematics, University of Hull, Hull, 1999.
  8. D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, in: Probability and Analysis (Varenna, 1985), Lecture Notes in Math. 1206, Springer, Berlin, 1986, 61-108.
  9. M. Capiński and S. Peszat, On the existence of a solution to stochastic Navier-Stokes equations, Nonlinear Anal., to appear.
  10. G. Da Prato, S. Kwapień and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), 1-23.
  11. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992.
  12. G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univ. Press, Cambridge, 1996.
  13. E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980.
  14. D. A. Dawson and H. Salehi, Spatially homogeneous random evolutions, J. Multivariate Anal. 10 (1980), 141-180.
  15. E. Dettweiler, Stochastic integration relative to Brownian motion on a general Banach space, Doǧa Mat. 15 (1991), 6-44.
  16. C. Donati-Martin and E. Pardoux, White noise driven SPDE'S with reflection, Probab. Theory Related Fields 95 (1993), 1-24.
  17. S. D. Eidel'man, Parabolic Systems, North-Holland, Amsterdam, 1969.
  18. T. Funaki, Regularity properties for stochastic partial differential equations of parabolic type, Osaka J. Math. 28 (1991), 495-516.
  19. N. Yu. Goncharuk and P. Kotelenez, Fractional step method for stochastic evolution equations, Stochastic Process. Appl. 73 (1998), 1-45.
  20. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, Berlin, 1981.
  21. K. Itô, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, SIAM, Philadelphia, 1984.
  22. P. Kotelenez, Existence, uniqueness and smoothness for a class of function valued stochastic partial differential equations, Stochastics Stochastics Rep. 41 (1992), 177-199.
  23. P. Kotelenez, Comparison methods for a class of function valued stochastic differential equations, Probab. Theory Related Fields 93 (1992), 1-19.
  24. H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, Berlin, 1975.
  25. O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, RI, 1968.
  26. R. Manthey and T. Zausinger, Stochastic evolution equations in L2νϱ, Stochastics Stochastics Rep. 66 (1999), 37-85.
  27. M. Marcus and G. Pisier, Random Fourier Series, with Applications to Harmonic Analysis, Princeton Univ. Press, Princeton, 1981.
  28. A. L. Neidhardt, Stochastic integrals in 2-uniformly smooth Banach spaces, Ph.D. Thesis, University of Wisconsin, 1978.
  29. J. Nobel, Evolution equation with Gaussian potential, Nonlinear Anal. 28 (1997), 103-135.
  30. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
  31. S. Peszat, Existence and uniqueness of the solution for stochastic equations on Banach spaces, Stochastics Stochastics Rep. 55 (1995), 167-193.
  32. S. Peszat and J. Seidler, Maximal inequalities and space-time regularity of stochastic convolutions, Math. Bohem. 123 (1998), 7-32.
  33. S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab. 23 (1995), 157-172.
  34. S. Peszat and J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), 187-204.
  35. S. Peszat and J. Zabczyk, Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields, to appear.
  36. G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1976), 326-350.
  37. E. Sinestrari, Accretive differential operators, Boll. Un. Mat. Ital. A 13 (1976), 19-31.
  38. G. Tessitore and J. Zabczyk, Invariant measures for stochastic heat equations, Probab. Math. Statist. 18 (1999), 271-287.
  39. G. Tessitore and J. Zabczyk, Strict positivity for stochastic heat equations, Stochastic Process. Appl. 77 (1998), 83-98.
  40. N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, Reidel, Dordrecht, 1987.
  41. J. B. Walsh, An introduction to stochastic partial differential equations, in: École d'été de probabilités de Saint-Flour XIV-1984, Lecture Notes in Math. 1180, Springer, Berlin, 1986, 265-439.
Pages:
261-299
Main language of publication
English
Received
1998-03-03
Accepted
1999-01-11
Published
1999
Exact and natural sciences