ArticleOriginal scientific textFourier analysis, Schur multipliers on
Title
Fourier analysis, Schur multipliers on and non-commutative Λ(p)-sets
Authors 1
Affiliations
- Equipe d'Analyse, Université Paris 6, 4, Place Jussieu, Case 186, 75252 Paris Cedex 05, France
Abstract
This work deals with various questions concerning Fourier multipliers on , Schur multipliers on the Schatten class as well as their completely bounded versions when and are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.
Bibliography
- M. Anoussis and E. Katsoulis, Complemented subspaces of
spaces and CSL algebras, J. London Math. Soc. 45 (1992), 301-313. - J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976.
- G. Bennett, Some ideals of operators on Hilbert space, Studia Math. 55 (1976), 27-40.
- D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292.
- A. Bonami, Ensembles Λ(p) dans le dual de
, Ann. Inst. Fourier (Grenoble) 18 (1968), no. 2, 193-204. - A. Bonami, Étude des coefficients de Fourier des fonctions de
, ibid. 20 (1970), no. 2, 335-402. - J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168.
- J. Bourgain, Vector valued singular integrals and the
-BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. Woyczynski (eds.), Marcel Dekker, New York, 1986, 1-19. - J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227-245.
- M. Bożejko, The existence of Λ(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 579-582.
- M. Bożejko, A remark to my paper (The existence of Λ(p) sets in discrete noncommutative groups), ibid. 11 (1975), 198-199.
- M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. (2) 51 (1975), 407-412.
- M. Bożejko, Remarks on the Herz-Schur multipliers on free groups, Math. Ann. 258 (1981), 11-15.
- M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), 297-302.
- J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995.
- J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
- E. Effros and Z. Ruan, A new apprach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337.
- J. Erdos, Completely distributive CSL algebras with no complements in
, Proc. Amer. Math. Soc. 124 (1996), 1127-1131. - U. Haagerup and G. Pisier, Bounded linear operators between
-algebras, Duke Math. J. 71 (1993), 889-925. - H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Non-commutative
-spaces, J. Funct. Anal. 56 (1984), 29-78. - S. Kwapień, On operators factorizable through
space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225. - S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Sequence Spaces, Springer, Berlin, 1976.
- J. López and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
- F. Lust-Piquard, Opérateurs de Hankel 1-sommant de l(N) dans l(N) et multiplicateurs de
, C. R. Acad. Sci. Paris Sér. I 299 (1984), 915-918. - F. Lust-Piquard, Inégalités de Khintchine dans
(1 < p < ∞), ibid. 303 (1986), 289-292. - F. Lust-Piquard and G. Pisier, Non-commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260.
- E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116.
- V. Peller, Hankel operators of class
and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. 113 (1980), 538-551 (in Russian); English transl.: Math. USSR-Sb. 41 (1982), 443-479. - V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class
, Integral Equations Operator Theory 5 (1982), 244-272. - G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3-19.
- G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, 1995.
- G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 585 (1996).
- G. Pisier, Non-commutative vector valued
-spaces and completely p-summing maps, Astérisque 247 (1998). - G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698.
- Z. Ruan, Subspaces of
-algebras, J. Funct. Anal. 76 (1988), 217-230. - W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228.
- I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 37 (1953), 401-457.
- J. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349.
- J. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248.
- E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
- M. Talagrand, Sections of smooth convex bodies via majorizing measures, Acta Math. 175 (1995), 273-306.
- N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes
, Studia Math. 50 (1974), 163-182. - N. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335.
- M. Zafran, Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405-1416.
- A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189-201.