ArticleOriginal scientific text

Title

Fourier analysis, Schur multipliers on Sp and non-commutative Λ(p)-sets

Authors 1

Affiliations

  1. Equipe d'Analyse, Université Paris 6, 4, Place Jussieu, Case 186, 75252 Paris Cedex 05, France

Abstract

This work deals with various questions concerning Fourier multipliers on Lp, Schur multipliers on the Schatten class Sp as well as their completely bounded versions when Lp and Sp are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the group ℤ.

Bibliography

  1. M. Anoussis and E. Katsoulis, Complemented subspaces of Cp spaces and CSL algebras, J. London Math. Soc. 45 (1992), 301-313.
  2. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976.
  3. G. Bennett, Some ideals of operators on Hilbert space, Studia Math. 55 (1976), 27-40.
  4. D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292.
  5. A. Bonami, Ensembles Λ(p) dans le dual de D, Ann. Inst. Fourier (Grenoble) 18 (1968), no. 2, 193-204.
  6. A. Bonami, Étude des coefficients de Fourier des fonctions de Lp(G), ibid. 20 (1970), no. 2, 335-402.
  7. J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Ark. Mat. 21 (1983), 163-168.
  8. J. Bourgain, Vector valued singular integrals and the H1-BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. Woyczynski (eds.), Marcel Dekker, New York, 1986, 1-19.
  9. J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem, Acta Math. 162 (1989), 227-245.
  10. M. Bożejko, The existence of Λ(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 579-582.
  11. M. Bożejko, A remark to my paper (The existence of Λ(p) sets in discrete noncommutative groups), ibid. 11 (1975), 198-199.
  12. M. Bożejko, On Λ(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer. Math. Soc. (2) 51 (1975), 407-412.
  13. M. Bożejko, Remarks on the Herz-Schur multipliers on free groups, Math. Ann. 258 (1981), 11-15.
  14. M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), 297-302.
  15. J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995.
  16. J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
  17. E. Effros and Z. Ruan, A new apprach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337.
  18. J. Erdos, Completely distributive CSL algebras with no complements in Sp, Proc. Amer. Math. Soc. 124 (1996), 1127-1131.
  19. U. Haagerup and G. Pisier, Bounded linear operators between C-algebras, Duke Math. J. 71 (1993), 889-925.
  20. H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Non-commutative Lp-spaces, J. Funct. Anal. 56 (1984), 29-78.
  21. S. Kwapień, On operators factorizable through Lp space, Bull. Soc. Math. France Mém. 31-32 (1972), 215-225.
  22. S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68.
  23. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Sequence Spaces, Springer, Berlin, 1976.
  24. J. López and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
  25. F. Lust-Piquard, Opérateurs de Hankel 1-sommant de l(N) dans l(N) et multiplicateurs de H1(T), C. R. Acad. Sci. Paris Sér. I 299 (1984), 915-918.
  26. F. Lust-Piquard, Inégalités de Khintchine dans Cp (1 < p < ∞), ibid. 303 (1986), 289-292.
  27. F. Lust-Piquard and G. Pisier, Non-commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260.
  28. E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116.
  29. V. Peller, Hankel operators of class ɞp and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. 113 (1980), 538-551 (in Russian); English transl.: Math. USSR-Sb. 41 (1982), 443-479.
  30. V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class ɞp, Integral Equations Operator Theory 5 (1982), 244-272.
  31. G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3-19.
  32. G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, 1995.
  33. G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 585 (1996).
  34. G. Pisier, Non-commutative vector valued Lp-spaces and completely p-summing maps, Astérisque 247 (1998).
  35. G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698.
  36. Z. Ruan, Subspaces of C-algebras, J. Funct. Anal. 76 (1988), 217-230.
  37. W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228.
  38. I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 37 (1953), 401-457.
  39. J. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349.
  40. J. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 32 (1970), 241-248.
  41. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
  42. M. Talagrand, Sections of smooth convex bodies via majorizing measures, Acta Math. 175 (1995), 273-306.
  43. N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp(1p<), Studia Math. 50 (1974), 163-182.
  44. N. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335.
  45. M. Zafran, Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405-1416.
  46. A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189-201.
Pages:
203-260
Main language of publication
English
Received
1998-03-02
Accepted
1999-02-16
Published
1999
Exact and natural sciences