ArticleOriginal scientific text
Title
Pointwise multiplication operators on weighted Banach spaces of analytic functions
Authors 1, 2, 3
Affiliations
- Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
- Institute of Mathematics (Poznań branch), Polish Academy of Sciences, Matejki 48/49, 60-769 Poznań, Poland
- Department of Mathematics, Åbo Akademi University, FIN-20500 Åbo, Finland
Abstract
For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator , , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map .
Keywords
weighted Banach spaces of analytic functions, pointwise multiplication operator, essential norm, closed range, approximative point spectrum, maximal ideal space of , Shilov boundary, Gleason part, hypercyclic operator, chaotic operator
Bibliography
- [A] S. Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26-44.
- [BO] B. Berndtsson and J. Ortega-Cerdà, On interpolation and sampling in Hilbert spaces of analytic functions, ibid. 464 (1995), 109-128.
- [BBT] K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 70-79.
- [BS] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70-79.
- [BDL] J. Bonet, P. Domański and M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), 139-148.
- [BDLT] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. 64 (1998), 101-118.
- [B] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), 845-847.
- [ChD] M. D. Choi and C. Davis, The spectral mapping theorem for joint approximative point spectrum, Bull. Amer. Math. Soc. 80 (1974), 317-321.
- [C] J. B. Conway, A Course in Functional Analysis, Springer, Berlin, 1990.
- [DL] P. Domański and M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, preprint, 1998.
- [G] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
- [GS] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifold, J. Funct. Anal. 98 (1991), 229-269.
- [Go] P. Gorkin, Functions not vanishing on trivial Gleason parts of Douglas algebras, Proc. Amer. Math. Soc. 104 (1988), 1086-1090.
- [H] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
- [KL] A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canad. J. Math. 21 (1969), 531-534.
- [L1] W. Lusky, On the structure of
and , Math. Nachr. 159 (1992), 279-289. - [L2] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320.
- [MS] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.
- [N] A. Nicolau, Finite products of interpolating Blaschke products, J. London Math. Soc. 50 (1994), 520-531.
- [RS] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280.
- [R1] W. Rudin, Functional Analysis, McGraw-Hill, 1974.
- [R2] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974.
- [S] K. Seip, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 21-39.
- [S1] K. Seip, On Korenblum's density condition for the zero sequences of
, J. Anal. Math. 67 (1995), 307-322. - [S2] K. Seip, Developments from nonharmonic Fourier series, in: Proc. ICM 1998, Vol. II, 713-722.
- [Sh] J. O. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.
- [SW] A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the disk, Michigan Math. J. 29 (1982), 3-25.
- [SZ] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148.
- [V] D. Vukotić, Pointwise multiplication operators between Bergman spaces on simply connected domains, Indiana Univ. Math. J., to appear.
- [Z] W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261.