ArticleOriginal scientific text
Title
functional calculus in real interpolation spaces
Authors 1
Affiliations
- Dipartimento di Matematica, Università di Bologna, Piazza di Porta, S. Donato 5, 40127 Bologna, Italy
Abstract
Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and is bounded outside every larger sector) and has a bounded inverse, then A has a bounded functional calculus in the real interpolation spaces between X and the domain of the operator itself.
Bibliography
- K. N. Boyadzhiev and R. J. deLaubenfels,
functional calculus for perturbations of generators of holomorphic semigroups, Houston J. Math. 17 (1991), 131-147. - K. N. Boyadzhiev and R. J. deLaubenfels, Semigroups and resolvents of bounded variation, imaginary powers and
functional calculus, Semigroup Forum 45 (1992), 372-384. - M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded
functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. - G. Dore and A. Venni, Some results about complex powers of closed operators, J. Math. Anal. Appl. 149 (1990), 124-136.
- R. deLaubenfels, A holomorphic functional calculus for unbounded operators, Houston J. Math. 13 (1987), 545-548.
- R. deLaubenfels, Unbounded holomorphic functional calculus and abstract Cauchy problems for operators with polynomially bounded resolvents, J. Funct. Anal. 114 (1993), 348-394.
- A. McIntosh, Operators which have an
functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations (Macquarie University, Ryde, N.S.W., September 8-10, 1986), B. Jefferies, A. McIntosh and W. Ricker (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., Canberra, 1986, 210-231. - A. McIntosh and A. Yagi, Operators of type ω without a bounded
functional calculus, in: Miniconference on Operators in Analysis (Macquarie University, Sydney, N.S.W., September 25-27, 1989), I. Doust, B. Jefferies, C. Li and A. McIntosh (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 159-172. - H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.