ArticleOriginal scientific text

Title

H functional calculus in real interpolation spaces

Authors 1

Affiliations

  1. Dipartimento di Matematica, Università di Bologna, Piazza di Porta, S. Donato 5, 40127 Bologna, Italy

Abstract

Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and λ(λI-A)-1 is bounded outside every larger sector) and has a bounded inverse, then A has a bounded H functional calculus in the real interpolation spaces between X and the domain of the operator itself.

Bibliography

  1. K. N. Boyadzhiev and R. J. deLaubenfels, H functional calculus for perturbations of generators of holomorphic semigroups, Houston J. Math. 17 (1991), 131-147.
  2. K. N. Boyadzhiev and R. J. deLaubenfels, Semigroups and resolvents of bounded variation, imaginary powers and H functional calculus, Semigroup Forum 45 (1992), 372-384.
  3. M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89.
  4. G. Dore and A. Venni, Some results about complex powers of closed operators, J. Math. Anal. Appl. 149 (1990), 124-136.
  5. R. deLaubenfels, A holomorphic functional calculus for unbounded operators, Houston J. Math. 13 (1987), 545-548.
  6. R. deLaubenfels, Unbounded holomorphic functional calculus and abstract Cauchy problems for operators with polynomially bounded resolvents, J. Funct. Anal. 114 (1993), 348-394.
  7. A. McIntosh, Operators which have an H functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations (Macquarie University, Ryde, N.S.W., September 8-10, 1986), B. Jefferies, A. McIntosh and W. Ricker (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Austral. Nat. Univ., Canberra, 1986, 210-231.
  8. A. McIntosh and A. Yagi, Operators of type ω without a bounded H functional calculus, in: Miniconference on Operators in Analysis (Macquarie University, Sydney, N.S.W., September 25-27, 1989), I. Doust, B. Jefferies, C. Li and A. McIntosh (eds.), Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 159-172.
  9. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
Pages:
161-167
Main language of publication
English
Received
1998-07-10
Accepted
1999-07-30
Published
1999
Exact and natural sciences