ArticleOriginal scientific text

Title

Isometric extensions, 2-cocycles and ergodicity of skew products

Authors 1, 2

Affiliations

  1. Department of Mechanics and Mathematics, Kharkov State University, Freedom sq. 4 Kharkov, 310077, Ukraine
  2. Faculty of Mathematics and Computer Science, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension Tα and admits a prescribed subgroup in the centralizer of Tα.

Keywords

ergodic transformation, cocycle, isometric extension

Bibliography

  1. [Br] L. G. Brown, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593-600.
  2. [D1] A. I. Danilenko, Comparison of cocycles of measured equivalence relations and lifting problems, Ergodic Theory Dynam. Systems 18 (1998), 125-151.
  3. [D2] A. I. Danilenko, On cocycles with values in group extensions. Generic results, Mat. Analiz Geom., to appear.
  4. [DG] A. I. Danilenko and V. Ya. Golodets, Extension of cocycles to normalizer elements, outer conjugacy and related problems, Trans. Amer. Math. Soc. 348 (1996), 4857-4882.
  5. [FL] S. Ferenczi and M. Lemańczyk, Rank is not a spectral invariant, Studia Math. 98 (1991), 227-230.
  6. [GLS] P. Gabriel, M. Lemańczyk and K. Schmidt, Extensions of cocycles for hyperfinite actions and applications, Monatsh. Math. 123 (1997), 209-228.
  7. [Ha] T. Hamachi, On a minimal group cover of an ergodic finite extension, preprint.
  8. [JLM] A. del Junco, M. Lemańczyk and M. Mentzen, Semisimplicity, joinings, and group extensions, Studia Math. 112 (1995), 141-164.
  9. [Ki] J. King, The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-384.
  10. [Kw] J. Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math. 103 (1992), 123-131.
  11. [Le] M. Lemańczyk, Cohomology groups, multipliers and factors in ergodic theory, ibid. 122 (1997), 275-288.
  12. [Me] M. K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, ibid. 101 (1991), 20-31.
  13. [Ne] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136.
  14. [Pa] K. R. Parthasarathy, Multipliers on Locally Compact Groups, Lecture Notes in Math. 93, Springer, 1969.
  15. [Sc] K. Schmidt, Lectures on Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Macmillan, 1977.
  16. [Z1] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409.
  17. [Z2] R. Zimmer, Ergodic Theory and Semisimple Lie Groups, Birkhäuser, Boston, 1984.
Pages:
123-142
Main language of publication
English
Received
1997-09-22
Accepted
1999-08-30
Published
1999
Exact and natural sciences