ArticleOriginal scientific text

Title

An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces

Authors 1

Affiliations

  1. Fachbereich Mathematik, Universität Dortmund, D-44221 Dortmund, Germany

Abstract

A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces C(K), S(N), B(RN), DL1(N), for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.

Bibliography

  1. E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300.
  2. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 170, North-Holland, 1993.
  3. E. Dubinsky, Differential equations and differential calculus in Montel spaces, Trans. Amer. Math. Soc. 110 (1964), 1-21.
  4. A. N. Godunov, On linear differential equations in locally convex spaces, Vest. Moskov. Univ. Mat. 29 (1974), no. 5, 31-39.
  5. R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
  6. G. Herzog, Über Gewöhnliche Differentialgleichungen in Frécheträumen,Ph.D. Thesis, Karlsruhe, 1992.
  7. L. Hörmander, Implicit Function Theorems, Lectures at Stanford University, Summer 1977.
  8. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
  9. J. Jung, Zum Satz der Inversen Funktionen in Frécheträumen, Diplomarbeit, Mainz, 1992.
  10. H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations 24 (1999), 1399-1418.
  11. R. Lemmert, On ordinary differential equations in locally convex spaces, Nonlinear Anal. 10 (1986), 1385-1390.
  12. S. G. Lobanov and O. G. Smolyanov, Ordinary differential equations in locally convex spaces, Russian Math. Surveys 49 (1994), 97-175.
  13. S. Łojasiewicz Jr. and E. Zehnder, An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33 (1979), 165-174.
  14. J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824-1831.
  15. J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63.
  16. M. Poppenberg, Characterization of the subspaces of(s) in the tame category, Arch. Math. (Basel) 54 (1990), 274-283.
  17. M. Poppenberg, Characterization of the quotient spaces of(s) in the tame category, Math. Nachr. 150 (1991), 127-141.
  18. M. Poppenberg, Simultaneous smoothing and interpolation with respect to E. Borel's Theorem, Arch. Math. (Basel) 61 (1993), 150-159.
  19. M. Poppenberg, A smoothing property for Fréchet spaces, J. Funct. Anal. 141 (1996), 193-210.
  20. M. Poppenberg, Tame sequence space representations of spaces of C-functions, Results Math. 29 (1996), 317-334.
  21. M. Poppenberg, An inverse function theorem for Fréchet spaces satisfying a smoothing property and(DN), Math. Nachr. 206 (1999), 123-145.
  22. M. Poppenberg, Smooth solutions for a class of nonlinear parabolic evolution equations, Proc. London Math. Soc., to appear.
  23. M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z. 219 (1995), 141-161.
  24. J. Robbin, On the existence theorem for differential equations, Proc. Amer. Math. Soc. 16 (1969), 1005-1006.
  25. T M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312.
  26. D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
  27. D. Vogt, Subspaces and quotient spaces of(s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 167-187.
  28. D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208.
  29. D. Vogt, On two classes of (F)-spaces, Arch. Math. (Basel) 45 (1985), 255-266.
  30. D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240.
Pages:
101-121
Main language of publication
English
Received
1996-11-29
Accepted
1999-05-05
Published
1999
Exact and natural sciences