ArticleOriginal scientific text

Title

Wold-type extension for N-tuples of commuting contractions

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
  2. IVIC, Departamento de Matemáticas, Apartado 21827 Caracas, 1020A, Venezuela

Abstract

Let (T_1,…,T_N) be an N-tuple of commuting contractions on a separable, complex, infinite-dimensional Hilbert space ℋ. We obtain the existence of a commuting N-tuple (V_1,…,V_N) of contractions on a superspace K of ℋ such that each Vj extends Tj, j=1,…,N, and the N-tuple (V_1,…,V_N) has a decomposition similar to the Wold-von Neumann decomposition for coisometries (although the Vj need not be coisometries). As an application, we obtain a new proof of a result of Słociński (see [9])

Keywords

contractions, dilations, extensions

Bibliography

  1. H. Bercovici, Notes on invariant subspaces, Bull. Amer. Math. Soc. 23 (1990), 1-36.
  2. H. Bercovici, Commuting power-bounded operators, Acta Sci. Math. (Szeged) 57 (1993), 55-64.
  3. H. Bercovici, C. Foiaş, and C. Pearcy, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory, CBMS Regional Conf. Ser. in Math. 56, Amer. Math. Soc., Providence, RI, 1985.
  4. L. Kérchy, Unitary asymptotes of Hilbert space operators, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 191-201.
  5. M. Kosiek and A. Octavio, On common invariant subspaces for N-tuples of commuting contractions with rich spectrum, to appear.
  6. M. Kosiek, A. Octavio, and M. Ptak, On the reflexivity of pairs of contractions, Proc. Amer. Math. Soc. 123 (1995), 1229-1236.
  7. M. Kosiek and M. Ptak, Reflexivity of n-tuples of contractions with rich joint left essential spectrum, Integral Equations Operator Theory 13 (1990), 395-420.
  8. A. Octavio, Coisometric extension and functional calculus for pairs of contractions, J. Operator Theory 31 (1994), 67-82.
  9. M. Słociński, On the Wold type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262.
  10. B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
Pages:
81-91
Main language of publication
English
Received
1998-11-27
Accepted
1999-03-26
Published
1999
Exact and natural sciences