ArticleOriginal scientific text

Title

On Bell's duality theorem for harmonic functions

Authors 1, 2

Affiliations

  1. Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, C/Vera 14, Valencia 46071, Spain
  2. Instituto de Matemáticas, Universidad Nacional Autónoma de México, Unidad Cuernavaca, A. P. 273-3 Admón. 3, Cuernavaca, Morelos, 62251, México

Abstract

Define h(E) as the subspace of C(B̅L,E) consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space h-(E) consisting of all harmonic E*-valued functions g such that (1-|x|)mf is bounded for some m>0. Then the dual h(E) is represented by h-(E) through f,g0=limr1ʃBf(rx),g(x)dx, fh-(E),gh(E). This extends the results of S. Bell in the scalar case.

Bibliography

  1. R. A. Adams, Sobolev Spaces, Academic Press, 1975.
  2. S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128.
  3. O. Blasco, Boundary values of vector-valued harmonic functions considered as operators, Studia Math. 86 (1987), 19-33.
  4. O. Blasco, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988), 346-364.
  5. O. Blasco and S. Pérez-Esteva, Lp continuity of projectors of weighted harmonic Bergman spaces, preprint.
  6. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 11-66.
  7. J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., 1977.
  8. J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960.
  9. N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
  10. A. E. Djrbashian and F. A. Shamoian, Topics in the Theory of Aαp Spaces, Teubner-Texte zur Math., 1988.
  11. A. Grothendieck, Produits tensoriels et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  12. G. Köthe, Topological Vector Spaces I, II, Springer, Heidelberg, 1969, 1979.
  13. E. Ligocka, The Sobolev spaces of harmonic functions, Studia Math. 84 (1986), 79-87.
  14. E. Ligocka, Estimates in Sobolev norms ·ps for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, ibid. 86 (1987), 255-271.
  15. E. Ligocka, On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, ibid. 87 (1987), 223-238.
  16. S. Pérez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces, ibid. 118 (1996), 37-47.
  17. E. Straube, Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 559-591.
Pages:
49-60
Main language of publication
English
Received
1998-06-12
Published
1999
Exact and natural sciences