ArticleOriginal scientific text
Title
On Bell's duality theorem for harmonic functions
Authors 1, 2
Affiliations
- Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, C/Vera 14, Valencia 46071, Spain
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, Unidad Cuernavaca, A. P. 273-3 Admón. 3, Cuernavaca, Morelos, 62251, México
Abstract
Define as the subspace of consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space consisting of all harmonic E*-valued functions g such that is bounded for some m>0. Then the dual is represented by through , . This extends the results of S. Bell in the scalar case.
Bibliography
- R. A. Adams, Sobolev Spaces, Academic Press, 1975.
- S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128.
- O. Blasco, Boundary values of vector-valued harmonic functions considered as operators, Studia Math. 86 (1987), 19-33.
- O. Blasco, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988), 346-364.
- O. Blasco and S. Pérez-Esteva,
continuity of projectors of weighted harmonic Bergman spaces, preprint. - R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in
, Astérisque 77 (1980), 11-66. - J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., 1977.
- J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960.
- N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- A. E. Djrbashian and F. A. Shamoian, Topics in the Theory of
Spaces, Teubner-Texte zur Math., 1988. - A. Grothendieck, Produits tensoriels et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- G. Köthe, Topological Vector Spaces I, II, Springer, Heidelberg, 1969, 1979.
- E. Ligocka, The Sobolev spaces of harmonic functions, Studia Math. 84 (1986), 79-87.
- E. Ligocka, Estimates in Sobolev norms
for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, ibid. 86 (1987), 255-271. - E. Ligocka, On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, ibid. 87 (1987), 223-238.
- S. Pérez-Esteva, Duality on vector-valued weighted harmonic Bergman spaces, ibid. 118 (1996), 37-47.
- E. Straube, Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 559-591.