ArticleOriginal scientific text

Title

Compound invariants and embeddings of Cartesian products

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Rostov State University, Rostov-na-Donu, Russia
  2. Department of Mathematics, Sofia University, 1164 Sofia, Bulgaria
  3. Research Institute for Basic Sciences, TÜBİTAK, 41470 Gebze-Kocaeli, Turkey

Abstract

New compound geometric invariants are constructed in order to characterize complemented embeddings of Cartesian products of power series spaces. Bessaga's conjecture is proved for the same class of spaces.

Keywords

isomorphic classification, Köthe spaces

Bibliography

  1. B C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318.
  2. C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. 9 (1961), 677-683.
  3. P. B. Djakov, A short proof of the theorem on quasi-equivalence of regular bases, Studia Math. 55 (1975), 269-271.
  4. P. B. Djakov, M. Yurdakul and V. P. Zahariuta, On Cartesian products of Köthe spaces, Bull. Polish Acad. Sci. 43 (1996), 113-117.
  5. P. B. Djakov, M. Yurdakul and V. P. Zahariuta, Isomorphic classification of Cartesian products of power series spaces, Michigan Math. J. 43 (1996), 221-229.
  6. M. M. Dragilev, On regular bases in nuclear spaces, Mat. Sb. 68 (1965), 153-173 (in Russian).
  7. M. M. Dragilev, Bases in Köthe Spaces, Rostov-na-Donu, 1983 (in Russian).
  8. A. N. Kolmogorov, On the linear dimension of topological vector spaces, Dokl. Akad. Nauk SSSR 120 (1958), 239-241 (in Russian).
  9. V. P. Kondakov, Problems of Geometry of Nonnormable Spaces, Rostov State University, Rostov-na-Donu, 1983 (in Russian).
  10. V. P. Kondakov, On structure of unconditional bases in some Köthe spaces, Studia Math. 76 (1983), 137-151 (in Russian).
  11. V. P. Kondakov and V. P. Zahariuta, On weak equivalence of bases in Köthe spaces, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Ser. Estestv. Nauk 4 (1982), 110-115 (in Russian).
  12. B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (1961), no. 4, 63-132 (in Russian).
  13. B. S. Mityagin, Sur l'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sci. Paris 269 (1969), 426-428.
  14. B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1970), 111-137 (in Russian).
  15. B. S. Mityagin, Non-Schwarzian power series spaces, Math. Z. 182 (1983), 303-310.
  16. A. Pełczyński, On the approximation of S-spaces by finite-dimensional spaces, Bull. Acad. Polon. Sci. 5 (1957), 879-881.
  17. M. Yurdakul and V. P. Zahariuta, Linear topological invariants and isomorphic classification of Cartesian products of locally convex spaces, Turkish J. Math. 19 (1995), 37-47.
  18. V. P. Zahariuta, On isomorphisms of Cartesian products of linear topological spaces, Funktsional. Anal. i Prilozhen. 4 (1970), no. 2, 87-88 (in Russian).
  19. V. P. Zahariuta, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), 201-221.
  20. V. P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, in: Matem. Analiz i ego Prilozhen. Rostov Univ., Vol. 2 (1970), 3-13, Vol. 3 (1971), 176-180 (in Russian).
  21. V. P. Zahariuta, Generalized Mityagin invariants and a continuum of pairwise nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (1977), no. 3, 24-30 (in Russian).
  22. V. P. Zahariuta, Synthetic diameters and linear topological invariants, in: School on the Theory of Operators in Function Spaces (abstracts of reports), Minsk, 1978, 51-52 (in Russian).
  23. V. P. Zahariuta, Linear Topological Invariants and Their Application to Generalized Power Spaces, Rostov Univ., 1979 (in Russian).
  24. V. P. Zahariuta, Linear topological invariants and their application to isomorphic classification of generalized power spaces, Turkish J. Math. 2 (1996), 237-289.
Pages:
33-47
Main language of publication
English
Received
1997-08-26
Published
1999
Exact and natural sciences