ArticleOriginal scientific text
Title
Approximation problems and representations of Hardy spaces in circular domains
Authors 1, 2
Affiliations
- Institut Girard Desargues, UFR de Mathématiques, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
- School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
Abstract
We derive various approximation results in the theory of Hardy spaces on circular domains G. Two applications are given, one to operators which admit a nice representation of , and the other to extremal problems with links to the theory of differential equations.
Bibliography
- J. Agler, Rational dilation on an annulus, Ann. of Math. 121:537-563, 1985.
- J. A. Ball and K. F. Clancey, Reproducing kernels for Hardy spaces on multiply connected domains, Integral Equations Operator Theory 25:35-57, 1996.
- L. Baratchart and J. Leblond, Hardy approximation to
functions on subsets of the circle with 1 ≤ p < ∞, Constr. Approx. 14:41-56, 1998. - L. Baratchart, J. Leblond and J. R. Partington, Hardy approximation to
functions on subsets of the circle, ibid. 12:423-436, 1996. - H. Bercovici, C. Foiaş and C. Pearcy, Two Banach space methods and dual operator algebras, J. Funct. Anal. 78:306-345, 1988.
- H. Bercovici, C. Hernandez-Garciadiego and V. Paulsen, Universal compressions of representations of
, Math. Ann. 281:177-191, 1988. - J. Bourgain, Some consequences of Pisier's approach to interpolation, Israel J. Math. 77:165-185, 1992.
- I. Chalendar and J. Esterle,
-factorization for -contractions with isometric functional calculus, J. Funct. Anal. 154:174-194, 1998. - B. Chevreau and W. S. Li, On certain representations of
and the reflexivity of associated operator algebras, ibid. 128:341-373, 1995. - B. Chevreau, C. Pearcy and A. L. Shields, Finitely connected domains G, representations of
, and invariant subspaces, J. Operator Theory 6:375-405, 1981. - R. G. Douglas and V. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged) 50:143-157, 1986.
- G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, 1969 (translated from Russian).
- K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1965.
- P. W. Jones,
estimates for the -problem in a half-plane, Acta Math. 150:137-152, 1983. - S. V. Kisliakov, Quantitative aspect of correction theorems, Zap. Nauchn. Sem. LOMI 92:182-191, 1979.
- S. V. Kisliakov, A sharp correction theorem, Studia Math. 113:177-196, 1995.
- J. Leblond and J. R. Partington, Constrained approximation and interpolation in Hilbert function spaces, J. Math. Anal. Appl., to appear.
- G. Pisier, Interpolation between
spaces and non-commutative generalizations I, Pacific J. Math. 155:341-368, 1992. - W. Rudin, Analytic functions of class
, Trans. Amer. Math. Soc. 78:46-66, 1955. - W. Rudin, Real and Complex Analysis, McGraw-Hill, third ed., 1986.
- X. Zheng, Functional calculus and its application to operator algebras, Integral Equations Operator Theory 24:484-496, 1996.