Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 136 | 3 | 255-269
Tytuł artykułu

Approximation problems and representations of Hardy spaces in circular domains

Treść / Zawartość
Warianty tytułu
Języki publikacji
We derive various approximation results in the theory of Hardy spaces on circular domains G. Two applications are given, one to operators which admit a nice representation of $H^∞(G)$, and the other to extremal problems with links to the theory of differential equations.
Słowa kluczowe
  • [1] J. Agler, Rational dilation on an annulus, Ann. of Math. 121:537-563, 1985.
  • [2] J. A. Ball and K. F. Clancey, Reproducing kernels for Hardy spaces on multiply connected domains, Integral Equations Operator Theory 25:35-57, 1996.
  • [3] L. Baratchart and J. Leblond, Hardy approximation to $L^p$ functions on subsets of the circle with 1 ≤ p < ∞, Constr. Approx. 14:41-56, 1998.
  • [4] L. Baratchart, J. Leblond and J. R. Partington, Hardy approximation to $L^∞$ functions on subsets of the circle, ibid. 12:423-436, 1996.
  • [5] H. Bercovici, C. Foiaş and C. Pearcy, Two Banach space methods and dual operator algebras, J. Funct. Anal. 78:306-345, 1988.
  • [6] H. Bercovici, C. Hernandez-Garciadiego and V. Paulsen, Universal compressions of representations of $H^∞(G)$, Math. Ann. 281:177-191, 1988.
  • [7] J. Bourgain, Some consequences of Pisier's approach to interpolation, Israel J. Math. 77:165-185, 1992.
  • [8] I. Chalendar and J. Esterle, $L^1$-factorization for $C_00$-contractions with isometric functional calculus, J. Funct. Anal. 154:174-194, 1998.
  • [9] B. Chevreau and W. S. Li, On certain representations of $H^∞(G)$ and the reflexivity of associated operator algebras, ibid. 128:341-373, 1995.
  • [10] B. Chevreau, C. Pearcy and A. L. Shields, Finitely connected domains G, representations of $H^∞(G)$, and invariant subspaces, J. Operator Theory 6:375-405, 1981.
  • [11] R. G. Douglas and V. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged) 50:143-157, 1986.
  • [12] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, 1969 (translated from Russian).
  • [13] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1965.
  • [14] P. W. Jones, $L^∞$ estimates for the $\overline ∂$-problem in a half-plane, Acta Math. 150:137-152, 1983.
  • [15] S. V. Kisliakov, Quantitative aspect of correction theorems, Zap. Nauchn. Sem. LOMI 92:182-191, 1979.
  • [16] S. V. Kisliakov, A sharp correction theorem, Studia Math. 113:177-196, 1995.
  • [17] J. Leblond and J. R. Partington, Constrained approximation and interpolation in Hilbert function spaces, J. Math. Anal. Appl., to appear.
  • [18] G. Pisier, Interpolation between $H^p$ spaces and non-commutative generalizations I, Pacific J. Math. 155:341-368, 1992.
  • [19] W. Rudin, Analytic functions of class $H_p$, Trans. Amer. Math. Soc. 78:46-66, 1955.
  • [20] W. Rudin, Real and Complex Analysis, McGraw-Hill, third ed., 1986.
  • [21] X. Zheng, Functional calculus and its application to operator algebras, Integral Equations Operator Theory 24:484-496, 1996.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.