ArticleOriginal scientific text

Title

Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables

Authors 1

Affiliations

  1. Bâtiment de Mathématiques M2, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cedex, France

Abstract

The aim of this paper is to study the α-semi-Fredholm operators in a nonseparable Hilbert space H for all cardinals α with 0αdimH. In the first part, we find the relation between γα(T) and c(πα(T)) for all 0-regular cardinals α, where γα is the reduced minimum modulus of weight α, c is the reduced minimum modulus (in a C*-algebra) and πα is the canonical surjection from B(H) onto Cα(H)=BHKα(H). We study the continuity points of the maps cα:Tc(πα(T)) and γα:Tγα(T). In the second part, we prove some approximation results for semi-Fredholm operators. We show that all connected components of semi-Fredholm operators of at most countable index have the same topological boundary. We show that this is not true for indices strictly greater than 0.

Bibliography

  1. C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
  2. R. H. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517.
  3. R. H. Bouldin, Closure of invertible operators on a Hilbert space, Proc. Amer. Math. Soc. 108 (1990), 721-726.
  4. R. H. Bouldin, Distance to invertible operators without separability, ibid. 116 (1992), 489-497.
  5. R. H. Bouldin, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), 167-178.
  6. R. H. Bouldin, Generalization of semi-Fredholm operators, Proc. Amer. Math. Soc. 123 (1995), 3757-3763.
  7. N. Bourbaki, Eléments de Mathématique. Livre I. Théorie des ensembles. Chapitre 3, Ensembles ordonnés cardinaux, nombres entiers, Hermann, Paris, 1967.
  8. L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. 10 (1990), 209-238.
  9. L. A. Coburn and A. Lebow, Components of invertible elements in quotient algebras of operators, Trans. Amer. Math. Soc. 130 (1968), 359-365.
  10. J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990.
  11. G. Edgar, D. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80.
  12. D. Ernest, Operators with α -closed range, Tôhoku Math. J. 24 (1972), 45-49.
  13. P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179-192.
  14. S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
  15. B. Gramsch, Eine idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115.
  16. P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
  17. R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77.
  18. R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138.
  19. D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Pitman, Boston, 1982.
  20. S. Izumino and Y. Kato, The closure of invertible operators on a Hilbert space, Acta Sci. Math. (Szeged) 49 (1985), 321-327.
  21. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
  22. T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
  23. E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of Hilbert space, Czechoslovak Math. J. 18 (1968), 595-605.
  24. M. Mbekhta, Conorme et inverse généralisé dans les C*-algèbres, Canad. Math. Bull. 35 (1992), 515-522.
  25. H. Skhiri, On the topological boundary of semi-Fredholm operators, Proc. Amer. Math. Soc. 126 (1998), 1381-1389.
  26. H. Skhiri, Opérateurs semi-Fredholm : structures et approximations, Thèse de doctorat, Université de Lille 1, 1997.
  27. A. Ströh, Regular liftings in C*-algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 1-7.
  28. P. Y. Wu, Approximation by invertible and noninvertible operators, J. Approx. Theory 56 (1989), 267-276.
Pages:
229-253
Main language of publication
French
Received
1998-12-07
Accepted
1999-02-08
Published
1999
Exact and natural sciences